Specializations of one-parameter families of polynomials

Farshid Hajir[1]; Siman Wong[1]

  • [1] University of Massachusetts Department of Mathematics & Statistics Amherst, MA 01003-9318 (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1127-1163
  • ISSN: 0373-0956

Abstract

top
Let K be a number field, and suppose λ ( x , t ) K [ x , t ] is irreducible over K ( t ) . Using algebraic geometry and group theory, we describe conditions under which the K -exceptional set of λ , i.e. the set of α K for which the specialized polynomial λ ( x , α ) is K -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed n 10 , all but finitely many K -specializations of the degree n generalized Laguerre polynomial L n ( t ) ( x ) are K -irreducible and have Galois group S n . Second, we study specializations of the modular polynomial Φ n ( x , t ) (which vanishes on the j -invariants of pairs of elliptic curves related by a cyclic n -isogeny), and show that for any n 53 , all but finitely many of the K -specializations of Φ n ( x , t ) are K -irreducible and have Galois group containing SL 2 ( / n ) / { ± I } . Third, for a simple branched cover π : Y K 1 of degree n 7 and of genus at least 2 , all but finitely many K -specializations are  K -irreducible and have Galois group S n .

How to cite

top

Hajir, Farshid, and Wong, Siman. "Specializations of one-parameter families of polynomials." Annales de l’institut Fourier 56.4 (2006): 1127-1163. <http://eudml.org/doc/10168>.

@article{Hajir2006,
abstract = {Let $K$ be a number field, and suppose $ \lambda (x,t)\in K[x, t] $ is irreducible over $K(t)$. Using algebraic geometry and group theory, we describe conditions under which the $K$-exceptional set of $\lambda $, i.e. the set of $\alpha \in K$ for which the specialized polynomial $\lambda (x,\alpha )$ is $K$-reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed $n\ge 10$, all but finitely many $K$-specializations of the degree $n$ generalized Laguerre polynomial $ L_n^\{(t)\}(x) $ are $K$-irreducible and have Galois group $S_n$. Second, we study specializations of the modular polynomial $\Phi _n(x,t)$ (which vanishes on the $j$-invariants of pairs of elliptic curves related by a cyclic $n$-isogeny), and show that for any $ n\ge 53 $, all but finitely many of the $K$-specializations of $ \Phi _n(x, t) $ are $K$-irreducible and have Galois group containing $\{\rm SL\}_2(\mathbb\{Z\}/n)/\lbrace \pm I \rbrace $. Third, for a simple branched cover $\pi :Y\rightarrow \mathbb\{P\}_K^\{1\}$ of degree $n\ge 7$ and of genus at least $2$, all but finitely many $K$-specializations are $K$-irreducible and have Galois group $S_n$.},
affiliation = {University of Massachusetts Department of Mathematics & Statistics Amherst, MA 01003-9318 (USA); University of Massachusetts Department of Mathematics & Statistics Amherst, MA 01003-9318 (USA)},
author = {Hajir, Farshid, Wong, Siman},
journal = {Annales de l’institut Fourier},
keywords = {Branched cover; complex multiplication; Hilbert irreducibility; modular equation; orthogonal polynomial; rational point; Riemann-Hurwitz formula; simple cover; specialization; branched cover},
language = {eng},
number = {4},
pages = {1127-1163},
publisher = {Association des Annales de l’institut Fourier},
title = {Specializations of one-parameter families of polynomials},
url = {http://eudml.org/doc/10168},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Hajir, Farshid
AU - Wong, Siman
TI - Specializations of one-parameter families of polynomials
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1127
EP - 1163
AB - Let $K$ be a number field, and suppose $ \lambda (x,t)\in K[x, t] $ is irreducible over $K(t)$. Using algebraic geometry and group theory, we describe conditions under which the $K$-exceptional set of $\lambda $, i.e. the set of $\alpha \in K$ for which the specialized polynomial $\lambda (x,\alpha )$ is $K$-reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed $n\ge 10$, all but finitely many $K$-specializations of the degree $n$ generalized Laguerre polynomial $ L_n^{(t)}(x) $ are $K$-irreducible and have Galois group $S_n$. Second, we study specializations of the modular polynomial $\Phi _n(x,t)$ (which vanishes on the $j$-invariants of pairs of elliptic curves related by a cyclic $n$-isogeny), and show that for any $ n\ge 53 $, all but finitely many of the $K$-specializations of $ \Phi _n(x, t) $ are $K$-irreducible and have Galois group containing ${\rm SL}_2(\mathbb{Z}/n)/\lbrace \pm I \rbrace $. Third, for a simple branched cover $\pi :Y\rightarrow \mathbb{P}_K^{1}$ of degree $n\ge 7$ and of genus at least $2$, all but finitely many $K$-specializations are $K$-irreducible and have Galois group $S_n$.
LA - eng
KW - Branched cover; complex multiplication; Hilbert irreducibility; modular equation; orthogonal polynomial; rational point; Riemann-Hurwitz formula; simple cover; specialization; branched cover
UR - http://eudml.org/doc/10168
ER -

References

top
  1. E. Artin, The gamma function, (1964), Holt, Rinehart and Winston Zbl0144.06802MR165148
  2. G. Butler, J. McKay, The transitive subgroups of degree up to eleven, Comm. in Algebra 11 (1983), 863-911 Zbl0518.20003MR695893
  3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups : maximal subgroups and ordinary characters for simple groups, (1985), Oxford Zbl0568.20001MR827219
  4. D. Cox, Primes of the form x 2 + n y 2 , (1989), Wiley Zbl0701.11001MR1028322
  5. C. J. Cummins, S. Pauli, Congruence subgroups of PSL ( 2 , ) of genus less than or equal to 24 , Exper. Math. 12 (2003), 243-255 Zbl1060.11021MR2016709
  6. P. Dèbes, M. D. Fried, Integral specialization of families of rational functions, Pacific J. Math. 190 (1999), 45-85 Zbl1016.12002MR1722766
  7. J. B. Dennin, Jr., The genus of subfields of K ( n ) , Proc. AMS 51 (1975), 282-288 Zbl0313.10022MR384698
  8. J. D. Dixon, B. Mortimer, Permutation groups, (1996), Springer-Verlag Zbl0951.20001MR1409812
  9. D. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401 Zbl0729.12008MR1079014
  10. W. Feit, A ˜ 5 and A ˜ 7 are Galois groups over number fields, J. Algebra 104 (1986), 231-260 Zbl0609.12005MR866773
  11. M. Filaseta, T. Y. Lam, On the irreducibility of the generalized Laguerre polynomials, Acta Arith. 105 (2002), 177-182 Zbl1010.12001MR1932764
  12. M. Filaseta, O. Trifonov, The irreducibility of the Bessel polynomials, J. reine angew. Math. 550 (2002), 125-140 Zbl1022.11053MR1925910
  13. M. Fried, On Hilbert’s irreducibility theorem, J. Number Theory 6 (1974), 211-231 Zbl0299.12002MR349624
  14. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math. 90 (1969), 542-575 Zbl0194.21901MR260752
  15. R. Gow, Some generalized Laguerre polynomials whose Galois groups are the alternating groups, J. Number Theory 31 (1989), 201-207 Zbl0693.12009MR987573
  16. F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials Zbl1255.33006
  17. F. Hajir, Some A ˜ n -extensions obtained from generalized Laguerre polynomials, J. Number Theory 50 (1995), 206-212 Zbl0829.12004MR1316816
  18. M. Hall, The theory of groups, (1959), Macmillan Zbl0084.02202MR103215
  19. N. Huppert, N. Blackburn, Finite groups III, (1982), Springer-Verlag Zbl0514.20002MR662826
  20. M. I. Knopp, M. Newman, Congruence subgroups of positive genus of the modular group, Ill. J. Math. 9 (1965), 577-583 Zbl0138.31701MR181675
  21. S. Lang, Fundamentals of Diophantine Geometry, (1983), Springer-Verlag Zbl0528.14013MR715605
  22. S. Lang, Elliptic functions, 2nd ed, (1987), Springer-Verlag Zbl0615.14018MR890960
  23. M. W. Liebeck, J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc. 63 (1991), 266-314 Zbl0696.20004MR1114511
  24. A. M. Macbeath, Extensions of the rationals with Galois group PGL ( 2 , n ) , Bull. London Math. Soc. 1 (1969), 332-338 Zbl0184.07603MR258801
  25. P. Müller, Finiteness results for Hilbert’s irreducibility theorem, Ann. Inst. Fourier 52 (2002), 983-1015 Zbl1014.12002MR1926669
  26. M. Rosen, Number theory in function fields, (2002), Springer-Verlag Zbl1043.11079MR1876657
  27. I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen. II, Sitzungsberichte der Berliner Akademie (1929), 370-391 Zbl55.0069.03
  28. I. Schur, Gleichungen ohne Affekt, Sitzungsberichte der Berliner Akademie (1930), 443-449 
  29. I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, J. reine angew. Math. 165 (1931), 52-58 Zbl0002.11501
  30. E. Sell, On a family of generalized Laguerre polynomials Zbl1053.11083MR2072388
  31. J.-P. Serre, Lectures on the Mordell-Weil theorem, 2nd ed, (1990), Vieweg Zbl0676.14005MR1002324
  32. J.-P. Serre, Topics in Galois theory, (1992), Jones and Bartlett Publ. Zbl0746.12001MR1162313
  33. J. H. Silverman, The arithmetic of elliptic curves, (1986), Springer-Verlag Zbl0585.14026MR817210
  34. H. Volklein, Groups as Galois groups : an introduction, (1996), Cambridge University Press Zbl0868.12003MR1405612
  35. H. Wielandt, Finite permutation groups, (1964), Academic Press Zbl0138.02501MR183775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.