The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes

Alexander I. Bobenko[1]; Ivan Izmestiev[1]

  • [1] Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 447-505
  • ISSN: 0373-0956

Abstract

top
We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.

How to cite

top

Bobenko, Alexander I., and Izmestiev, Ivan. "Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes." Annales de l’institut Fourier 58.2 (2008): 447-505. <http://eudml.org/doc/10322>.

@article{Bobenko2008,
abstract = {We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.},
affiliation = {Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany); Technische Universität Berlin Institut für Mathematik Str. des 17. Juni 136 10623 Berlin (Germany)},
author = {Bobenko, Alexander I., Izmestiev, Ivan},
journal = {Annales de l’institut Fourier},
keywords = {Singular Euclidean metric; convex polytope; total scalar curvature; singular euclidean metric; Delaunay triangulation; generalized convex polytope; generalized dual; mixed volumes.},
language = {eng},
number = {2},
pages = {447-505},
publisher = {Association des Annales de l’institut Fourier},
title = {Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes},
url = {http://eudml.org/doc/10322},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Bobenko, Alexander I.
AU - Izmestiev, Ivan
TI - Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 447
EP - 505
AB - We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program.
LA - eng
KW - Singular Euclidean metric; convex polytope; total scalar curvature; singular euclidean metric; Delaunay triangulation; generalized convex polytope; generalized dual; mixed volumes.
UR - http://eudml.org/doc/10322
ER -

References

top
  1. A. D. Alexandrov, On the theory of mixed volumes II, Mat. Sbornik 44 (1937), 1205-1238 
  2. A. D. Alexandrov, Existence of a convex polyhedron and of a convex surface with a given metric, Mat. Sbornik, N. Ser. 11(53) (1942), 15-65 Zbl0061.37603MR13540
  3. A. D. Alexandrov, Convex polyhedra, (2005), Springer-Verlag, Berlin Zbl1067.52011MR2127379
  4. Franz Aurenhammer, Rolf Klein, Voronoi diagrams, Handbook of computational geometry (2000), 201-290, North-Holland, Amsterdam Zbl0995.65024MR1746678
  5. W. Blaschke, Ein Beweis für die Unverbiegbarkeit geschlossener konvexer Flächen., Nachr. Ges. Wiss. Göttingen (1912), 607-610 Zbl43.0697.01
  6. W. Blaschke, G. Herglotz, Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum, Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt. No.2 (1937), 229-230 Zbl0018.23501
  7. A. Bobenko, B. Springborn, A discrete Laplace-Beltrami operator for simplicial surfaces Zbl1144.65011
  8. Brian H. Bowditch, Singular Euclidean structures on surfaces, J. London Math. Soc. (2) 44 (1991), 553-565 Zbl0748.57003MR1149015
  9. Max Dehn, Über die Starrheit konvexer Polyeder., Math. Ann. 77 (1916), 466-473 Zbl46.1115.01MR1511873
  10. Herbert Edelsbrunner, Geometry and topology for mesh generation, 7 (2001), Cambridge University Press, Cambridge Zbl0981.65028MR1833977
  11. Maksym Fedorchuk, Igor Pak, Rigidity and polynomial invariants of convex polytopes, Duke Math. J. 129 (2005), 371-404 Zbl1081.52012MR2165546
  12. François Fillastre, Polyhedral realization of hyperbolic metrics with conical singularities on compact surfaces, Ann. Inst. Fourier (Grenoble) 57 (2007), 163-195 Zbl1123.53033MR2313089
  13. P. Filliman, Rigidity and the Alexandrov-Fenchel inequality., Monatsh. Math. 113 (1992), 1-22 Zbl0765.52017MR1149057
  14. S. Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational geometry (1997), 377-388, CRC, Boca Raton, FL Zbl0907.68190MR1730176
  15. I. M. Gelʼfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser Boston Inc., Boston, MA Zbl0827.14036MR1264417
  16. D. Glickenstein, Geometric triangulations and discrete Laplacians on manifolds Zbl1243.52014
  17. C. Indermitte, Th. M. Liebling, M. Troyanov, H. Clémençon, Voronoi diagrams on piecewise flat surfaces and an application to biological growth, Theoret. Comput. Sci. 263 (2001), 263-274 Zbl0974.68222MR1846934
  18. H. Liebmann, Beweis zweier Sätze über die Bestimmung von Ovaloiden durch das Krümmungsmass oder die mittlere Krümmung für jede Normalenrichtung., Nachr. Ges. Wiss. Göttingen (1899), 134-142 Zbl30.0547.02
  19. J. Milnor, The Schläfli differential equality, Collected papers 1 (1994), Publish or Perish Inc., Houston, TX 
  20. Hermann Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198-219 Zbl28.0427.01
  21. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394 Zbl0051.12402MR58265
  22. Igor Pak, Rigidity and polynomial invariants of convex polytopes, Sib. Math. J. 47 (2006), 859-864 Zbl1150.52311MR2265287
  23. T Regge, General relativity without coordinates, Nuovo Cimento 19 (1961), 558-571 MR127372
  24. Igor Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. (2) 139 (1994), 553-580 Zbl0823.52009MR1283870
  25. Jean-Marc Schlenker, Circle patterns on singular surfaces 
  26. Jean-Marc Schlenker, Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007), 2155-2189 (electronic) Zbl1126.53041MR2276616
  27. Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, 44 (1993), Cambridge University Press, Cambridge Zbl0798.52001MR1216521
  28. Boris A. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra Zbl1181.52018
  29. Yu. A. Volkov, An estimate for the deformation of a convex surface in dependence on the variation of its intrinsic metric, Ukrain. Geometr. Sb. 5–6 (1968), 44-69 Zbl0207.20801MR283734
  30. Yu. A. Volkov, E. G. Podgornova, Existence of a convex polyhedron with prescribed development, Taškent. Gos. Ped. Inst. Učen. Zap. 85 (1971), 3-54, 83 MR328776
  31. H. Weyl, Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement, Zürich. Naturf. Ges. 61 (1916), 40-72 Zbl46.1115.03
  32. G. Ziegler, Lectures on polytopes, 152 (1995), Springer-Verlag, Berlin Zbl0823.52002MR1311028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.