Formal geometric quantization
- [1] Université Montpellier II Institut de Mathématiques et de Modélisation de Montpellier (I3M) Place Eugène Bataillon 34095 MONTPELLIER (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 199-238
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topParadan, Paul-Émile. "Formal geometric quantization." Annales de l’institut Fourier 59.1 (2009): 199-238. <http://eudml.org/doc/10390>.
@article{Paradan2009,
abstract = {Let $K$ be a compact Lie group acting in a Hamiltonian way on a symplectic manifold $(M,\Omega )$ which is pre-quantized by a Kostant-Souriau line bundle. We suppose here that the moment map $\Phi $ is proper so that the reduced space $M_\{\mu \}:=\Phi ^\{-1\}(K\cdot \mu )/K$ is compact for all $\mu $. Then, we can define the “formal geometric quantization” of $M$ as\[ \mathcal\{Q\}\_K^\{-\infty \}(M):=\sum \_\{\mu \in \widehat\{K\}\} \mathcal\{Q\}(M\_\{\mu \}) V\_\mu ^K. \]The aim of this article is to study the functorial properties of the assignment $(M,K)\rightarrow \mathcal\{Q\}_K^\{-\infty \}(M)$.},
affiliation = {Université Montpellier II Institut de Mathématiques et de Modélisation de Montpellier (I3M) Place Eugène Bataillon 34095 MONTPELLIER (France)},
author = {Paradan, Paul-Émile},
journal = {Annales de l’institut Fourier},
keywords = {Geometric quantization; moment map; symplectic reduction; index; transversally elliptic; geometric quantization},
language = {eng},
number = {1},
pages = {199-238},
publisher = {Association des Annales de l’institut Fourier},
title = {Formal geometric quantization},
url = {http://eudml.org/doc/10390},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Paradan, Paul-Émile
TI - Formal geometric quantization
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 199
EP - 238
AB - Let $K$ be a compact Lie group acting in a Hamiltonian way on a symplectic manifold $(M,\Omega )$ which is pre-quantized by a Kostant-Souriau line bundle. We suppose here that the moment map $\Phi $ is proper so that the reduced space $M_{\mu }:=\Phi ^{-1}(K\cdot \mu )/K$ is compact for all $\mu $. Then, we can define the “formal geometric quantization” of $M$ as\[ \mathcal{Q}_K^{-\infty }(M):=\sum _{\mu \in \widehat{K}} \mathcal{Q}(M_{\mu }) V_\mu ^K. \]The aim of this article is to study the functorial properties of the assignment $(M,K)\rightarrow \mathcal{Q}_K^{-\infty }(M)$.
LA - eng
KW - Geometric quantization; moment map; symplectic reduction; index; transversally elliptic; geometric quantization
UR - http://eudml.org/doc/10390
ER -
References
top- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 Zbl0482.58013MR642416
- M. F. Atiyah, G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531-545 Zbl0164.24201MR236951
- M. F. Atiyah, I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484-530 Zbl0164.24001MR236950
- M. F. Atiyah, I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604 Zbl0164.24301MR236952
- M. F. Atiyah, I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 139-149 Zbl0212.28603MR279834
- Michael Francis Atiyah, Elliptic operators and compact groups, (1974), Springer-Verlag, Berlin Zbl0297.58009MR482866
- Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, 298 (1992), Springer-Verlag, Berlin Zbl0744.58001MR1215720
- Nicole Berline, Michèle Vergne, The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math. 124 (1996), 11-49 Zbl0847.46037MR1369410
- Nicole Berline, Michèle Vergne, L’indice équivariant des opérateurs transversalement elliptiques, Invent. Math. 124 (1996), 51-101 Zbl0883.58037MR1369411
- Michel Brion, Variétés sphériques, Opérations hamiltoniennes et opération de groupes algébriques (1997), 1-60, Notes de la session de S.M.F., Grenoble
- Michel Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998), 137-174 Zbl0935.14029MR1610599
- Jean-Luc Brylinski, Décomposition simpliciale d’un réseau, invariante par un groupe fini d’automorphismes, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A137-A139 Zbl0406.14022MR524769
- J.-L. Colliot-Thélène, D. Harari, A. N. Skorobogatov, Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math. 23 (2005), 161-170 Zbl1078.14076MR2155008
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) 996 (1983), 1-44, Springer, Berlin Zbl0581.14041
- C. De Concini, C. Procesi, Complete symmetric varieties. II. Intersection theory, Algebraic groups and related topics (Kyoto/Nagoya, 1983) 6 (1985), 481-513, North-Holland, Amsterdam Zbl0596.14041
- J. J. Duistermaat, The heat kernel Lefschetz fixed point formula for the spin- Dirac operator, (1996), Birkhäuser Boston Inc., Boston, MA Zbl0858.58045MR1365745
- V. Guillemin, S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538 Zbl0503.58018MR664118
- Lisa C. Jeffrey, Frances C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997), 647-693 Zbl0876.55007MR1422429
- George Kempf, Linda Ness, The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) 732 (1979), 233-243, Springer, Berlin Zbl0407.22012MR555701
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, 31 (1984), Princeton University Press, Princeton, NJ Zbl0553.14020MR766741
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III (1970), 87-208. Lecture Notes in Math., Vol. 170, Springer, Berlin Zbl0223.53028MR294568
- Eugene Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), 247-258 Zbl0835.53034MR1338784
- Eugene Lerman, Eckhard Meinrenken, Sue Tolman, Chris Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998), 245-259 Zbl0913.58023MR1489203
- Eckhard Meinrenken, On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996), 373-389 Zbl0851.53020MR1325798
- Eckhard Meinrenken, Symplectic surgery and the -Dirac operator, Adv. Math. 134 (1998), 240-277 Zbl0929.53045MR1617809
- Eckhard Meinrenken, Reyer Sjamaar, Singular reduction and quantization, Topology 38 (1999), 699-762 Zbl0928.37013MR1679797
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- Tadao Oda, Convex bodies and algebraic geometry, 15 (1988), Springer-Verlag, Berlin Zbl0628.52002MR922894
- Paul-Emile Paradan, Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), 442-509 Zbl1001.53062MR1875155
- Reyer Sjamaar, Symplectic reduction and Riemann-Roch formulas for multiplicities, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 327-338 Zbl0857.58021MR1364017
- Youliang Tian, Weiping Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229-259 Zbl0944.53047MR1621428
- Michele Vergne, Multiplicities formula for geometric quantization. I, II, Duke Math. J. 82 (1996), 143-179, 181–194 Zbl0855.58034MR1387225
- Michèle Vergne, Quantification géométrique et réduction symplectique, Astérisque (2002), 249-278 Zbl1037.53062MR1975181
- Jonathan Weitsman, Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds, Lett. Math. Phys. 56 (2001), 31-40 Zbl1024.53051MR1848164
- Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303-368 Zbl0768.53042MR1185834
- Chris Woodward, The classification of transversal multiplicity-free group actions, Ann. Global Anal. Geom. 14 (1996), 3-42 Zbl0877.58022MR1375064
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.