Velocity and Entropy of Motion in Periodic Potentials
- [1] Max-Planck-Institut für Math. in den Naturw., Inselstr. 22–26, D-04103 Leipzig, Germany
Séminaire Équations aux dérivées partielles (1996-1997)
- Volume: 1996-1997, page 1-11
Access Full Article
topAbstract
topHow to cite
topKnauf, Andreas. "Velocity and Entropy of Motion in Periodic Potentials." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-11. <http://eudml.org/doc/10921>.
@article{Knauf1996-1997,
abstract = {This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.},
affiliation = {Max-Planck-Institut für Math. in den Naturw., Inselstr. 22–26, D-04103 Leipzig, Germany},
author = {Knauf, Andreas},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Velocity and Entropy of Motion in Periodic Potentials},
url = {http://eudml.org/doc/10921},
volume = {1996-1997},
year = {1996-1997},
}
TY - JOUR
AU - Knauf, Andreas
TI - Velocity and Entropy of Motion in Periodic Potentials
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 11
AB - This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.
LA - eng
UR - http://eudml.org/doc/10921
ER -
References
top- Asch, J., Knauf, A.: Motion in Periodic Potentials. Preprint (1997) Zbl0896.34027MR1492956
- Benatti, F., Hudetz, T., Knauf, A.: Quantum Chaos and Dynamical Entropy. Preprint (1997) Zbl0927.37008MR1670033
- Connes, A., Narnhofer, H., Thirring, W.: Dynamical Entropy for C* algebras and von Neumann Algebras. Commun. Math. Phys. 112, 691 (1987). Zbl0637.46073MR910587
- Gérard, Ch., Nier, F.: Scattering Theory for the Perturbations of Periodic Schrödinger Operators. Preprint Ecole Polytechnique (1997) Zbl0934.35111MR1669979
- Klein, M., Knauf, A.: Classical Planar Scattering by Coulombic Potentials. Lecture Notes in Physics m 13. Berlin, Heidelberg, New York: Springer; 1993 Zbl0783.70001
- Knauf, A.: Ergodic and Topological Properties of Coulombic Periodic Potentials. Commun. Math. Phys. 110, 89–112 (1987) Zbl0616.58044MR885572
- Knauf, A.: Coulombic Periodic Potentials: The Quantum Case. Annals of Physics 191, 205–240 (1989) MR1003009
- Knauf, A.: Closed orbits and converse KAM theory. Nonlinearity 3, 961–973 (1990) Zbl0702.70013MR1067089
- Reed, M., Simon, B.: Methods in Mathematical Physics, Vol. IV: Analysis of Operators. New York: Academic Press 1978 Zbl0401.47001MR493421
- Thomas, L.E.: Time Dependent Approach to Scattering from Impurities in a Crystal. Commun. Math. Phys 33, 335–343 (1973) MR334766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.