Démonstration de la conjecture de Bieberbach

Joseph Oesterlé

Séminaire Bourbaki (1984-1985)

  • Volume: 27, page 319-334
  • ISSN: 0303-1179

How to cite

top

Oesterlé, Joseph. "Démonstration de la conjecture de Bieberbach." Séminaire Bourbaki 27 (1984-1985): 319-334. <http://eudml.org/doc/110050>.

@article{Oesterlé1984-1985,
author = {Oesterlé, Joseph},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {319-334},
publisher = {Société Mathématique de France},
title = {Démonstration de la conjecture de Bieberbach},
url = {http://eudml.org/doc/110050},
volume = {27},
year = {1984-1985},
}

TY - JOUR
AU - Oesterlé, Joseph
TI - Démonstration de la conjecture de Bieberbach
JO - Séminaire Bourbaki
PY - 1984-1985
PB - Société Mathématique de France
VL - 27
SP - 319
EP - 334
LA - fre
UR - http://eudml.org/doc/110050
ER -

References

top
  1. [A;G] R. Askey and G. Gasper - Positive Jacobi polynomial sums, II, Amer. J. Math.98(1976), 709-737. Zbl0355.33005MR430358
  2. [Bi] L. Bieberbach - Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss.Berlin (1916), 940-955. Zbl46.0552.01JFM46.0552.01
  3. [Be] S.D. Bernardi - Bibliography of schlicht functions, Courant Institute of Math. Sciences, New York Univ., 1966 ; Part II, ibid., 1977. (Réimprimé par Mariner Publishing Co. : Tampa, Florida, 1983, avec ajout d'une partie III). Zbl0545.30009MR702510
  4. [dB 1] L. de Branges - A proof of the Bieberbach conjecture, USSR Academy of Sciences, Steklov Math. Institute, LOMI, preprint E - 5 - 84, Leningrad, 1984. 
  5. [dB 2] L. de Branges - A proof of the Bieberbach conjecture, Acta Math.154(1985), 137-152. Zbl0573.30014MR772434
  6. [Du] P.L. Duren - Univalent functions - Grundlehren der Math. Wiss.259, Springer Verlag, 1983. Zbl0514.30001MR708494
  7. [F;P] C.H. Fitzgerald and Ch. Pommerenke - The de Branges theorem on univalent functions, Trans. Am. Math. Soc., à paraître. Zbl0574.30018MR792819
  8. [Ga] G. Gasper - A short proof of an inequality used by de Branges in his proof of the Bieberbach, Robertson and Milin conjectures, à paraître. Zbl0605.30018
  9. [Gr] H. Grunsky - Neue Abschätzungen zur konformen Abbildung ein und mehrfach zusammenhängender Bereiche, Schr. Math. Inst. u. Inst. Angew. Math. Univ. Berlin I, 1932, 95-140. Zbl0005.36204
  10. [Ko] P. Koebe - Über die Uniformisierung beliebiger analytischer Kurven, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1. (1907), 191-210. Zbl38.0454.01JFM38.0454.01
  11. [Lö] K. Löwner - Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann.89(1923), 103-121. Zbl49.0714.01MR1512136JFM49.0714.01
  12. [Mi 1] I.M. Milin - On the coefficients of univalent functions, Dokl. Akad. Nauk. SSSR, 176(1967), 1015-1018 (en russe) = Soviet Math. Dokl., 8(1967), 1255-1258. Zbl0176.03201MR222276
  13. [Mi 2] I.M. Milin - Univalent functions and orthonormal systems, Izdat. "Nauka", Moscow (1971) (en russe) = Amer. Math. Soc., Providence, R.I., 1977. Zbl0228.30011MR427620
  14. [Rg] W. Rdgosinski - On the coefficients of subordinate functions, Proc. Lond. Math. Soc.48(1943), 48-82. Zbl0028.35502MR8625
  15. [Ro 1] M.S. Robertson - A remark on the odd schlicht functions, Bull. Amer. Math. Soc.42(1936), 366-370. Zbl0014.40702JFM62.0373.01
  16. [Ro 2] M.S. Robertson - Quasi subordination and coefficients conjectures, Bull. Amer. Math. Soc.76(1970), 1-9. Zbl0191.09101MR251210
  17. [S-S] T. Sheil-Small - On the convolution of analytic functions, J. Reine Angew. Math.258(1973), 137-152. Zbl0267.30012MR320761
  18. [Sb;S] M. Shub and S. Smale - Computational complexity ; on the geometry of polynomials and a theory of cost, Part I, à paraître aux Annales Scientifiques de l'E.N.S. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.