Symmetric and Zygmund measures in several variables

Evgueni Doubtsov[1]; Artur Nicolau[2]

  • [1] St. Petersburg State University, Department of Mathematical analysis, Bibliotechnaya pl. 2, Staryi Petergof, 198904 St. Petersburg (Russie)
  • [2] Universitat Autonoma de Barcelona, Departament de Matemàtiques, 08193 Bellaterra, Barcelona (Espagne)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 153-177
  • ISSN: 0373-0956

Abstract

top
Let ω : ( 0 , ) ( 0 , ) be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure μ n is called ω -Zygmund if there exists a positive constant C such that | μ ( Q + ) - μ ( Q - ) | C ω ( ( Q + ) ) | Q + | for any pair Q + , Q - n of adjacent cubes of the same size. Similarly, μ is called an ω - symmetric measure if there exists a positive constant C such that | μ ( Q + ) / μ ( Q - ) - 1 | C ω ( ( Q + ) ) for any pair Q + , Q - n of adjacent cubes of the same size, ( Q + ) = ( Q - ) < 1 . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition 0 ω 2 ( t ) t - 1 d t < governs the existence of singular ω -Zygmund ( ω -symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.

How to cite

top

Doubtsov, Evgueni, and Nicolau, Artur. "Symmetric and Zygmund measures in several variables." Annales de l’institut Fourier 52.1 (2002): 153-177. <http://eudml.org/doc/115971>.

@article{Doubtsov2002,
abstract = {Let $\omega :(0,\infty )\rightarrow (0,\infty )$ be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure $\mu \in \{\mathbb \{R\}\}^n$ is called $\omega $-Zygmund if there exists a positive constant $C$ such that $\vert \mu (Q_\{+\})- \mu (Q_\{-\})\vert \le C\omega (\ell (Q_\{+\}))\vert Q_\{+\}\vert $ for any pair $Q_+,Q_\{-\}\subset \{\mathbb \{R\}\}^n$ of adjacent cubes of the same size. Similarly, $\mu $ is called an $\omega $- symmetric measure if there exists a positive constant $C$ such that $\vert \mu (Q_+)/\mu (Q_\{-\})-1\vert \le C\omega (\ell (Q_\{+\}))$ for any pair $Q_+,Q_\{- \}\subset \{\mathbb \{R\}\}^n$ of adjacent cubes of the same size, $\ell (Q_\{+\})=\ell (Q_\{-\})&lt;1$. We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition $\int _0\omega ^2(t)t^\{-1\}dt&lt;\infty $ governs the existence of singular $\omega $-Zygmund ($\omega $-symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.},
affiliation = {St. Petersburg State University, Department of Mathematical analysis, Bibliotechnaya pl. 2, Staryi Petergof, 198904 St. Petersburg (Russie); Universitat Autonoma de Barcelona, Departament de Matemàtiques, 08193 Bellaterra, Barcelona (Espagne)},
author = {Doubtsov, Evgueni, Nicolau, Artur},
journal = {Annales de l’institut Fourier},
keywords = {doubling measures; Zygmund measures; harmonic extensions; quadratic condition; symmetric measure},
language = {eng},
number = {1},
pages = {153-177},
publisher = {Association des Annales de l'Institut Fourier},
title = {Symmetric and Zygmund measures in several variables},
url = {http://eudml.org/doc/115971},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Doubtsov, Evgueni
AU - Nicolau, Artur
TI - Symmetric and Zygmund measures in several variables
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 153
EP - 177
AB - Let $\omega :(0,\infty )\rightarrow (0,\infty )$ be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure $\mu \in {\mathbb {R}}^n$ is called $\omega $-Zygmund if there exists a positive constant $C$ such that $\vert \mu (Q_{+})- \mu (Q_{-})\vert \le C\omega (\ell (Q_{+}))\vert Q_{+}\vert $ for any pair $Q_+,Q_{-}\subset {\mathbb {R}}^n$ of adjacent cubes of the same size. Similarly, $\mu $ is called an $\omega $- symmetric measure if there exists a positive constant $C$ such that $\vert \mu (Q_+)/\mu (Q_{-})-1\vert \le C\omega (\ell (Q_{+}))$ for any pair $Q_+,Q_{- }\subset {\mathbb {R}}^n$ of adjacent cubes of the same size, $\ell (Q_{+})=\ell (Q_{-})&lt;1$. We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition $\int _0\omega ^2(t)t^{-1}dt&lt;\infty $ governs the existence of singular $\omega $-Zygmund ($\omega $-symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.
LA - eng
KW - doubling measures; Zygmund measures; harmonic extensions; quadratic condition; symmetric measure
UR - http://eudml.org/doc/115971
ER -

References

top
  1. A.B. Aleksandrov, J.M. Anderson, A. Nicolau, Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc. 79 (1999), 318-352 Zbl1085.46020MR1702245
  2. J.M. Anderson, J.L. Fernandez, A.L. Shields, Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc. 323 (1991), 429-448 Zbl0768.46003MR979966
  3. C. Bishop, Bounded functions in the little Bloch space, Pacific J. Math. 142 (1990), 209-225 Zbl0652.30024MR1042042
  4. J. Brossard, Intégrale d'aire et supports d'une mesure positive, C.R.A.S. Paris, Ser. I Math. 296 (1983), 231-232 Zbl0539.60038MR692984
  5. L. Carleson, On mappings, conformal at the boundary, J. d'Analyse Math. 19 (1967), 1-13 Zbl0186.13701MR215986
  6. J.J. Carmona, J. Donaire, On removable singularities for the analytic Zygmund class, Michigan Math. J. 43 (1996), 51-65 Zbl0862.30035MR1381599
  7. S.Y.A. Chang, J.M. Wilson, T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv. 60 (1985), 217-246 Zbl0575.42025MR800004
  8. J. Garcí a-Cuerva, J.L. Rubio, de Francia, Weighted Norm Inequalities and Related Topics, 116 (1985), North-Holland Zbl0578.46046MR807149
  9. P.L. Duren, H.S. Shapiro, A. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254 Zbl0174.37501MR199359
  10. R.A. Fefferman, C.E. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124 Zbl0770.35014MR1114608
  11. F.P. Gardiner, D.P. Sullivan, Symmetric structures on a closed curve, American J. Math. 114 (1992), 683-736 Zbl0778.30045MR1175689
  12. J.P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseignement Math. 15 (1969), 185-192 Zbl0175.33902MR245734
  13. J.G. Llorente, Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach, Potential Analysis 9 (1998), 229-260 Zbl0924.31004MR1666891
  14. N.G. Makarov, Probability methods in the theory of conformal mappings, Leningrad Math. J. 1 (1990), 1-56 Zbl0736.30006MR1015333
  15. G. Piranian, Two monotonic, singular, uniformly almost smooth functions, Duke Math. J. 33 (1966), 255-262 Zbl0143.07405MR199320
  16. W. Smith, Inner functions in the hyperbolic little Bloch class, Michigan Math. J. 45 (1998), 103-114 Zbl0976.30018MR1617418
  17. E. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.