Spectral theory of translation surfaces : A short introduction
- [1] Université de Nantes Laboratoire de mathématiques Jean Leray UMR CNRS 6629 2 rue de la Houssinière BP 92208 44322 Nantes cedex 3 (France)
Séminaire de théorie spectrale et géométrie (2009-2010)
- Volume: 28, page 51-62
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topHillairet, Luc. "Spectral theory of translation surfaces : A short introduction." Séminaire de théorie spectrale et géométrie 28 (2009-2010): 51-62. <http://eudml.org/doc/116465>.
@article{Hillairet2009-2010,
abstract = {We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum},
affiliation = {Université de Nantes Laboratoire de mathématiques Jean Leray UMR CNRS 6629 2 rue de la Houssinière BP 92208 44322 Nantes cedex 3 (France)},
author = {Hillairet, Luc},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {translation surfaces; flat Laplace operator; isospectrality},
language = {eng},
pages = {51-62},
publisher = {Institut Fourier},
title = {Spectral theory of translation surfaces : A short introduction},
url = {http://eudml.org/doc/116465},
volume = {28},
year = {2009-2010},
}
TY - JOUR
AU - Hillairet, Luc
TI - Spectral theory of translation surfaces : A short introduction
JO - Séminaire de théorie spectrale et géométrie
PY - 2009-2010
PB - Institut Fourier
VL - 28
SP - 51
EP - 62
AB - We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum
LA - eng
KW - translation surfaces; flat Laplace operator; isospectrality
UR - http://eudml.org/doc/116465
ER -
References
top- M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, (1987), D. Reidel Publishing Co., Dordrecht MR1192782
- J. Cheeger, M. Taylor, On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math. 35 (1982), 275-331 Zbl0526.58049MR649347
- G. Forni, Sobolev regularity of solutions of the cohomological equation Zbl0893.58037
- G. Grubb, Distributions and operators, 252 (2009), Springer, New York Zbl1171.47001MR2453959
- L. Hillairet, Spectral decomposition of square-tiled surfaces, Math. Z. 260 (2008), 393-408 Zbl1156.58012MR2429619
- L. Hillairet, A. Kokotov, -matrix and Krein formula on Euclidean surfaces with conical singularities
- D. Jakobson, M. Levitin, N. Nadirashvili, I. Polterovich, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond, J. Comput. Appl. Math. 194 (2006), 141-155 Zbl1121.58027MR2230975
- A. Kokotov, Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians Zbl1129.58010
- A. Kokotov, D. Korotkin, Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), 35-100 Zbl1175.30041MR2504770
- V. Kostrykin, R. Schrader, Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications 415 (2006), 201-225, Amer. Math. Soc., Providence, RI Zbl1122.34066MR2277618
- M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, (1975), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0242.46001MR493420
- M. Reed, B. Simon, Methods of modern mathematical physics. I, (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0459.46001MR751959
- M. Troyanov, Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2) 32 (1986), 79-94 Zbl0611.53035MR850552
- A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I (2006), 437-583, Springer, Berlin Zbl1129.32012MR2261104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.