Homogenization of linear elasticity equations

Jan Franců

Aplikace matematiky (1982)

  • Volume: 27, Issue: 2, page 96-117
  • ISSN: 0862-7940

Abstract

top
The homogenization problem (i.e. the approximation of the material with periodic structure by a homogeneous one) for linear elasticity equation is studied. Both formulations in terms of displacements and in terms of stresses are considered and the results compared. The homogenized equations are derived by the multiple-scale method. Various formulae, properties of the homogenized coefficients and correctors are introduced. The convergence of displacment vector, stress tensor and local energy is proved by a simplified local energy method.

How to cite

top

Franců, Jan. "Homogenization of linear elasticity equations." Aplikace matematiky 27.2 (1982): 96-117. <http://eudml.org/doc/15229>.

@article{Franců1982,
abstract = {The homogenization problem (i.e. the approximation of the material with periodic structure by a homogeneous one) for linear elasticity equation is studied. Both formulations in terms of displacements and in terms of stresses are considered and the results compared. The homogenized equations are derived by the multiple-scale method. Various formulae, properties of the homogenized coefficients and correctors are introduced. The convergence of displacment vector, stress tensor and local energy is proved by a simplified local energy method.},
author = {Franců, Jan},
journal = {Aplikace matematiky},
keywords = {homogenization; approximation of material with periodic structure by homogeneous one; terms of displacements; terms of stresses; results compared; multiple-scale method; properties of homogenized coefficients; correctors; convergence of displacement vector; stress tensor; local energy; simplified local energy method; homogenization; approximation of material with periodic structure by homogeneous one; terms of displacements; terms of stresses; results compared; multiple-scale method; properties of homogenized coefficients; correctors; convergence of displacement vector; stress tensor; local energy; simplified local energy method},
language = {eng},
number = {2},
pages = {96-117},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of linear elasticity equations},
url = {http://eudml.org/doc/15229},
volume = {27},
year = {1982},
}

TY - JOUR
AU - Franců, Jan
TI - Homogenization of linear elasticity equations
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 2
SP - 96
EP - 117
AB - The homogenization problem (i.e. the approximation of the material with periodic structure by a homogeneous one) for linear elasticity equation is studied. Both formulations in terms of displacements and in terms of stresses are considered and the results compared. The homogenized equations are derived by the multiple-scale method. Various formulae, properties of the homogenized coefficients and correctors are introduced. The convergence of displacment vector, stress tensor and local energy is proved by a simplified local energy method.
LA - eng
KW - homogenization; approximation of material with periodic structure by homogeneous one; terms of displacements; terms of stresses; results compared; multiple-scale method; properties of homogenized coefficients; correctors; convergence of displacement vector; stress tensor; local energy; simplified local energy method; homogenization; approximation of material with periodic structure by homogeneous one; terms of displacements; terms of stresses; results compared; multiple-scale method; properties of homogenized coefficients; correctors; convergence of displacement vector; stress tensor; local energy; simplified local energy method
UR - http://eudml.org/doc/15229
ER -

References

top
  1. A. Ambrosetti C. Sbordone, Γ -convergenza e G-convergenza per problemi non lineari di tipo ellittici, Bol. Un. Mat. Ital. A(5), 13 (1976), 352-362. (1976) MR0487703
  2. I. Babuška, 10.1137/0507048, SIAM J. Math. Anal., 7(1976), 603-634 (I), 635-645 (II), 8(1977), 923-937 (III). (1976) MR0509273DOI10.1137/0507048
  3. I. Babuška, Homogenization and its application. Mathematical and computational problems. Numerical solution of partial differential equations, III, (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), 89-116, Academic Press, New York, 1976. (1975) MR0502025
  4. N. S. Bahvalov, The averaging of partial differential equations with rapidly oscillating coefficients, (Russian) Problems in mathematical physics and numerical mathematics (Russian), 34-51, 323, "Nauka", Moscow, 1977. (1977) MR0521167
  5. A. Bensoussan J. L. Lions G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland 1978. (1978) MR0503330
  6. V. L. Berdičevskij, On averaging of periodic structures, (Russian), Prikl. Mat. Meh., 41 (1977), 6, 993-1006. (1977) MR0529542
  7. M. Biroli, 10.1007/BF02925757, Rend. Sem. Mat. Fis. Milano, 47 (1977), 269 - 328. (1977) MR0526888DOI10.1007/BF02925757
  8. J. F. Bourgat, Numerical experiments of the homogenization method for operators with periodic coefficients, IRIA-LABORIA Report, no. 277 (1978); Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I, 330-356, Lecture Notes in Math., 704, Springer, Berlin, 1979. (1978) MR0540121
  9. J. F. Bourgat A. Dervieux, Méthode d'homogénéisation de opérateurs à coefficients périodiques: Etude des correcteurs provenant du développement asymptotique, IRIA-LABORIA Report, n. 278 (1978). (1978) 
  10. E. De Giorgi, Convergence problems for functional and operators, Proceedings of the International Meeting on Recent Methods in Non-linear Analysis (Rome, 1978), 131 - 188, Pitagora, Bologna, 1979. (1978) MR0533166
  11. P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Appl. (4). 117 (1978), 139-152. (1978) MR0515958
  12. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
  13. J. Nečas I. Hlaváček, Mathematical theory of elastic and elastico-plastic bodies: An introduction, Elsevier, Amsterdam 1981. (1981) MR0600655
  14. Ha Tien Ngoan, On convergence of solutions of boundary value problems for sequence of elliptic systems, (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh., 5 (1977), 83 - 92. (1977) 
  15. E. Sanchez Palencia, 10.1016/0020-7225(74)90062-7, Internát. J. Engrg. ScL, 12 (1974), 331 - 351. (1974) Zbl0275.76032MR0441059DOI10.1016/0020-7225(74)90062-7
  16. S. Spagnolo, Convergence in energy for elliptic operators. Numerical solution of partial differential equations, III, (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), 469-498. Academic Press, New York, 1976. (1975) MR0477444
  17. P. M. Suquet, Une méthode duále en homogénéisation. Application aux milieux élastiques périodiques, C. R. Acad. Sci. Paris Sér. A, 291 (1980), 181 - 184. (1980) Zbl0491.73024MR0605012
  18. V. V. Žikov S. M. Kozlov O. A. Olejnik, Ha Tien Ngoan, Homogenization and G-convergence of differential operators, (Russian), Uspehi Mat. Nauk, 34 (1979), 5 (209), 65-133. (1979) MR0562800
  19. P. M. Suquet, Une méthode duále en homogénéisation: Application aux milieux élastiques, Submitted to J. Mécanique. Zbl0516.73016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.