Bayes unbiased estimation in a model with two variance components
Aplikace matematiky (1987)
- Volume: 32, Issue: 2, page 120-130
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topStuchlý, Jaroslav. "Bayes unbiased estimation in a model with two variance components." Aplikace matematiky 32.2 (1987): 120-130. <http://eudml.org/doc/15484>.
@article{Stuchlý1987,
abstract = {In the paper an explicit expression for the Bayes invariant quadratic unbiased estimate of the linear function of the variance components is presented for the mixed linear model $\mathbf \{t=X\beta +\epsilon \}$, $\mathbf \{E(t)=X\beta \}$, $\mathbf \{D(t)=0_1U_1+0_2U_2\}$ with the unknown variance componets in the normal case. The matrices $\mathbf \{U_1\}$, $\mathbf \{U_2\}$ may be singular. Applications to two examples of the analysis of variance are given.},
author = {Stuchlý, Jaroslav},
journal = {Aplikace matematiky},
keywords = {risk function; explicit expression; Bayes invariant quadratic unbiased estimate; linear function of the variance components; mixed linar model; normal case; risk function; explicit expression; Bayes invariant quadratic unbiased estimate; linear function of the variance components; mixed linar model; normal case},
language = {eng},
number = {2},
pages = {120-130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bayes unbiased estimation in a model with two variance components},
url = {http://eudml.org/doc/15484},
volume = {32},
year = {1987},
}
TY - JOUR
AU - Stuchlý, Jaroslav
TI - Bayes unbiased estimation in a model with two variance components
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 2
SP - 120
EP - 130
AB - In the paper an explicit expression for the Bayes invariant quadratic unbiased estimate of the linear function of the variance components is presented for the mixed linear model $\mathbf {t=X\beta +\epsilon }$, $\mathbf {E(t)=X\beta }$, $\mathbf {D(t)=0_1U_1+0_2U_2}$ with the unknown variance componets in the normal case. The matrices $\mathbf {U_1}$, $\mathbf {U_2}$ may be singular. Applications to two examples of the analysis of variance are given.
LA - eng
KW - risk function; explicit expression; Bayes invariant quadratic unbiased estimate; linear function of the variance components; mixed linar model; normal case; risk function; explicit expression; Bayes invariant quadratic unbiased estimate; linear function of the variance components; mixed linar model; normal case
UR - http://eudml.org/doc/15484
ER -
References
top- S. Gnot J. Kleffe, 10.1016/0378-3758(83)90045-9, Journal of statistical planning and Inference 8 (1983) 267-279. (1983) MR0729245DOI10.1016/0378-3758(83)90045-9
- L. Kubáček, Fundaments of the theory of estimates, (Slovak). Veda, Publishing House of Slovak Acad. Sc., Bratislava 1983,. (1983)
- C. R. Rao, 10.1016/0047-259X(71)90019-4, J. Multivariate Anal. (1971) I, 445-456. (1971) Zbl0259.62061MR0301870DOI10.1016/0047-259X(71)90019-4
- C. R. Rao, Linear statistical inference and its applications, J. Wiley, New York 1973. (1973) Zbl0256.62002MR0346957
- C. R. Rao S. K. Mitra, Generalized inverse of matrices and its applications, J. Wiley, New York 1972. (1972) MR0338013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.