Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique
- Volume: 23, Issue: 4, page 649-688
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] C. BERNARDI, C. CANUTO & Y. MADAY, Generalized Inf-Sup Conditionfor Chebyshev Approximation of the Navier-Stokes Equations, à paraître dans SIAM J. Numer. Anal. Zbl0666.76055
- [2] C. BERNARDI, Y. MADAY & B. MÉTIVET, Spectral Approximation of the Periodic Nonperiodic Navier-Stokes Equations (to appear in Numer. Math.). Zbl0583.65085MR914344
- [3] C. BERNARDI, Y. MADAY & B. MÉTIVET, Calcul de la pression dans la résolution spectrale du problème de Stokes, La Recherche Aérospatiale 1 (1987), 1-21. Zbl0642.76037MR904608
- [4] F. BREZZI, On the Existence, Uniqueness and Approximation of Saddle-Point problems Arising from Lagrange Multipliers, RAIRO Anal. Numér. 8 (1974), 129-151. Zbl0338.90047MR365287
- [5] C. CANUTO & A. QUARTERONI, Approximation Results for Orthogonal Potynomials in Sobolev Spaces, Math, of Comp. 38 (1981), 67-86. Zbl0567.41008MR637287
- [6] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI & T. A. ZANG, Spectral Methods in Fluid Dynamics, Springer-Verlag in press (1987). Zbl0658.76001MR917480
- [7] P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press (1985). Zbl0537.65020MR760629
- [8] V. GIRAULT & P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag (1986). Zbl0413.65081MR851383
- [9] M. R. MALIK, T. A. ZANG & M. Y. HUSSAINI, A Spectral Collocation Method for the Navier-Stokes Equations, Icase Report n° 84-19 (1984). Zbl0573.76036