Coupling the Stokes and Navier-Stokes equations with two scalar nonlinear parabolic equations
Macarena Gómez Mármol; Francisco Ortegón Gallego
- Volume: 33, Issue: 1, page 157-167
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGómez Mármol, Macarena, and Ortegón Gallego, Francisco. "Coupling the Stokes and Navier-Stokes equations with two scalar nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 157-167. <http://eudml.org/doc/193908>.
@article{GómezMármol1999,
author = {Gómez Mármol, Macarena, Ortegón Gallego, Francisco},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear turbulent viscosity; nonlinear source terms; existence; positivity},
language = {eng},
number = {1},
pages = {157-167},
publisher = {Dunod},
title = {Coupling the Stokes and Navier-Stokes equations with two scalar nonlinear parabolic equations},
url = {http://eudml.org/doc/193908},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Gómez Mármol, Macarena
AU - Ortegón Gallego, Francisco
TI - Coupling the Stokes and Navier-Stokes equations with two scalar nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 157
EP - 167
LA - eng
KW - nonlinear turbulent viscosity; nonlinear source terms; existence; positivity
UR - http://eudml.org/doc/193908
ER -
References
top- [1] R. Adams, Sobolev Spaces. Academic Press (1975). Zbl0314.46030MR450957
- [2] L. Boccardo and T. Gallouët, Non-linear Elliptic and Parabolic Equations Involving Measure Data. J. Funct. Anal. 87 (1989) 149-169. Zbl0707.35060MR1025884
- [3] H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983). Zbl0511.46001MR697382
- [4] T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires. Série Mathématiques et Applications, Ellipses (1990). Zbl0786.35070MR1299976
- [5] M. Gómez Máramol, Ph. D. thesis. Universidad de Sevilla (to appear).
- [6] R. Lewandowski, Modèles de turbulence et équations paraboliques. C. R. Acad. Sci. Paris 317 (1993) 835-840. Zbl0790.76042MR1246649
- [7] R. Lewandowski and B. Mohammadi, Existence and positivity results for the Φ-Θ model and a modified k-Є turbulence model. Math. Model and Methods in Applied Sciences 3 (1993) 195-215. Zbl0773.76036MR1212939
- [8] B. Mohammadi and O. Pironneau, Analysis of the k-Є turbulence model. Reserach in Applied Mathematics. Wiley-Masson, Paris (1994). MR1296252
- [9] J. Simon, Compact sets in the space Lp ([0,T];B). Annali di Matimàtica Pura et Applicata (1987) 65-96. Zbl0629.46031MR916688
- [10] TEMAM R., Navier-Stokes equations. Theory and numerical analysis. North Holland Publishing Company, Amsterdam (1979). Zbl0426.35003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.