Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault; Larkin Ridgway Scott

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 6, page 1007-1053
  • ISSN: 0764-583X

Abstract

top
We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes use Hood-Taylor discretizations for the velocity and pressure, and either a centered or an upwind discretization of the transport term. One facet of our analysis is that, without restrictions on the data, each scheme has a discrete solution and all discrete solutions converge strongly to solutions of the exact problem. Furthermore, if the domain is convex and the data satisfy certain conditions, each scheme satisfies error inequalities that lead to error estimates.

How to cite

top

Girault, Vivette, and Scott, Larkin Ridgway. "Finite-element discretizations of a two-dimensional grade-two fluid model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.6 (2001): 1007-1053. <http://eudml.org/doc/194085>.

@article{Girault2001,
abstract = {We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes use Hood-Taylor discretizations for the velocity and pressure, and either a centered or an upwind discretization of the transport term. One facet of our analysis is that, without restrictions on the data, each scheme has a discrete solution and all discrete solutions converge strongly to solutions of the exact problem. Furthermore, if the domain is convex and the data satisfy certain conditions, each scheme satisfies error inequalities that lead to error estimates.},
author = {Girault, Vivette, Scott, Larkin Ridgway},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed formulation; divergence-zero finite elements; inf-sup condition; uniform $W^\{1,p\}$-stability; Hood-Taylor method; streamline diffusion; tangential boundary condition; two-dimensional polygon; generalized-Stokes problem; -stability; transport equation; divergence-free discrete velocities; centered discretization; Hood-Taylor discretizations; error estimates},
language = {eng},
number = {6},
pages = {1007-1053},
publisher = {EDP-Sciences},
title = {Finite-element discretizations of a two-dimensional grade-two fluid model},
url = {http://eudml.org/doc/194085},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Girault, Vivette
AU - Scott, Larkin Ridgway
TI - Finite-element discretizations of a two-dimensional grade-two fluid model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 6
SP - 1007
EP - 1053
AB - We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes use Hood-Taylor discretizations for the velocity and pressure, and either a centered or an upwind discretization of the transport term. One facet of our analysis is that, without restrictions on the data, each scheme has a discrete solution and all discrete solutions converge strongly to solutions of the exact problem. Furthermore, if the domain is convex and the data satisfy certain conditions, each scheme satisfies error inequalities that lead to error estimates.
LA - eng
KW - mixed formulation; divergence-zero finite elements; inf-sup condition; uniform $W^{1,p}$-stability; Hood-Taylor method; streamline diffusion; tangential boundary condition; two-dimensional polygon; generalized-Stokes problem; -stability; transport equation; divergence-free discrete velocities; centered discretization; Hood-Taylor discretizations; error estimates
UR - http://eudml.org/doc/194085
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] M. Amara, C. Bernardi and V. Girault, Conforming and nonconforming discretizations of a two-dimensional grade-two fluid. In preparation. Zbl1072.76036
  3. [3] D.N. Arnold, L.R. Scott and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Ser. 15 (1988) 169–192. Zbl0702.35208
  4. [4] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. Zbl0258.65108
  5. [5] M. Baia and A. Sequeira, A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281–295. Zbl0957.76033
  6. [6] C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. Zbl0913.65007
  7. [7] J. Boland and R. Nicolaides, Stabilility of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. Zbl0521.76027
  8. [8] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
  9. [9] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129–151. Zbl0338.90047
  10. [10] F. Brezzi and R.S. Falk, Stability of a higher order Hood-Taylor method. SIAM J. Numer. Anal. 28 (1991) 581–590. Zbl0731.76042
  11. [11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  12. [12] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
  13. [13] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. (1975) 77–84. Zbl0368.65008
  14. [14] D. Cioranescu and E.H. Ouazar, Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 285–287. Zbl0571.76005
  15. [15] D. Cioranescu and E.H. Ouazar, Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar 109, Pitman (1984) 178–197. Zbl0577.76012
  16. [16] J.E. Dunn and R.L. Fosdick, Thermodynamics, stability, and boundedness of fluids of complexity two and fluids of second grade. Arch. Rational Mech. Anal. 56 (1974) 191–252. Zbl0324.76001
  17. [17] J.E. Dunn and K.R. Rajagopal, Fluids of differential type: Critical review and thermodynamic analysis. Internat. J. Engrg. Sci. 33 5 (1995) 689–729. Zbl0899.76062
  18. [18] R. Durán, R.H. Nochetto and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2- D . Math. Comp. 51 (1988) 1177–1192. Zbl0699.76038
  19. [19] V. Girault and P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
  20. [20] V. Girault and L.R. Scott, Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981–1011. Zbl0961.35116
  21. [21] V. Girault and L.R. Scott, Hermite Interpolation of Non-Smooth Functions Preserving Boundary Conditions. Department of Mathematics, University of Chicago, Preprint (1999). Zbl1002.65129
  22. [22] V. Girault and L.R. Scott, An upwind discretization of a steady grade-two fluid model in two dimensions. To appear in Collège de France Seminar. Zbl1034.35110MR1936003
  23. [23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24 Pitman, Boston (1985). Zbl0695.35060MR775683
  24. [24] D.D. Holm, J.E. Marsden and T.S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349 (1998) 4173–4177. 
  25. [25] D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137 (1998) 1–81. Zbl0951.37020
  26. [26] E. Hopf, Über die Aufangswertaufgabe für die hydrodynamischen Grundleichungen. Math. Nachr. 4 (1951) 213–231. Zbl0042.10604
  27. [27] T.J.R. Hugues, A simple finite element scheme for developping upwind finite elements. Internat. J. Numer. Methods Engrg. 12 (1978) 1359–1365. Zbl0393.65044
  28. [28] C. Johnson, Numerical Solution of PDE by the Finite Element Method. Cambridge University Press, Cambridge (1987). Zbl0628.65098MR925005
  29. [29] C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1985) 285–312. Zbl0526.76087
  30. [30] J. Leray, Étude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82. Zbl0006.16702
  31. [31] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  32. [32] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, I. Dunod, Paris (1968). Zbl0165.10801
  33. [33] J.W. Morgan and L.R. Scott, A nodal basis for C 1 piecewise polynomials of degree n 5 . Math. Comp. 29 (1975) 736–740. Zbl0307.65074
  34. [34] J. Nečas, Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584
  35. [35] R.R. Ortega, Contribución al estudio teórico de algunas E.D.P. no lineales relacionadas con fluidos no Newtonianos. Thesis, University of Sevilla (1995). 
  36. [36] E.H. Ouazar, Sur les fluides de second grade. Thèse de 3ème Cycle, Université Paris VI (1981). 
  37. [37] J. Peetre, Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble) 16 (1966) 279–317. Zbl0151.17903
  38. [38] O. Pironneau, Finite Element Methods for Fluids. Wiley, Chichester (1989). Zbl0712.76001MR1030279
  39. [39] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111–143. Zbl0608.65013
  40. [40] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. Zbl0696.65007
  41. [41] R. Stenberg, Analysis of finite element methods for the Stokes problem: a unified approach. Math. Comp. 42 (1984) 9–23. Zbl0535.76037
  42. [42] L. Tartar, Topics in nonlinear analysis, in Publications Mathématiques d’Orsay, Université Paris-Sud, Orsay (1978). Zbl0395.00008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.