Note on the Wijsman hyperspaces of completely metrizable spaces
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 827-832
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChaber, J., and Pol, R.. "Note on the Wijsman hyperspaces of completely metrizable spaces." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 827-832. <http://eudml.org/doc/196017>.
@article{Chaber2002,
abstract = {We consider the hyperspace $CL(X)$ of nonempty closed subsets of completely metrizable space $X$ endowed with the Wijsman topologies $\tau_\{W_\{d\}\}$. If $X$ is separable and $d$, $e$ are two metrics generating the topology of $X$, every countable set closed in $(CL(X), \tau_\{W_\{e\}\})$ has isolated points in $(CL(X), \tau_\{W_\{d\}\})$. For $d=e$ , this implies a theorem of Costantini on topological completeness of $(CL(X), \tau_\{W_\{d\}\})$. We show that for nonseparable $X$ the hyperspace $(CL(X), \tau_\{W_\{d\}\})$ may contain a closed copy of the rationals. This answers a question of Zsilinszky.},
author = {Chaber, J., Pol, R.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {827-832},
publisher = {Unione Matematica Italiana},
title = {Note on the Wijsman hyperspaces of completely metrizable spaces},
url = {http://eudml.org/doc/196017},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Chaber, J.
AU - Pol, R.
TI - Note on the Wijsman hyperspaces of completely metrizable spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 827
EP - 832
AB - We consider the hyperspace $CL(X)$ of nonempty closed subsets of completely metrizable space $X$ endowed with the Wijsman topologies $\tau_{W_{d}}$. If $X$ is separable and $d$, $e$ are two metrics generating the topology of $X$, every countable set closed in $(CL(X), \tau_{W_{e}})$ has isolated points in $(CL(X), \tau_{W_{d}})$. For $d=e$ , this implies a theorem of Costantini on topological completeness of $(CL(X), \tau_{W_{d}})$. We show that for nonseparable $X$ the hyperspace $(CL(X), \tau_{W_{d}})$ may contain a closed copy of the rationals. This answers a question of Zsilinszky.
LA - eng
UR - http://eudml.org/doc/196017
ER -
References
top- BEER, G., Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht, 1993. Zbl0792.54008MR1269778
- COSTANTINI, C., Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc., 123 (1995), 2569-2574. Zbl0831.54014MR1273484
- COSTANTINI, C., On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc., 126 (1998), 3393-3396. Zbl0898.54012MR1618729
- VAN DOUWEN, E., The integers in topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.) North Holland, Amsterdam1984, 116-167. Zbl0561.54004MR776622
- ENGELKING, R.- MRÓWKA, On -compact spaces, Bull. Acad. Pol. Sci., 6 (1958), pp. 429-439. Zbl0083.17402MR97042
- KECHRIS, A. S., Classical Descriptive Set Theory, Springer Verlag, New York, 1994. Zbl0819.04002MR1321597
- ZSILINSZKY, L., Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc., 126 (1998), pp. 3763-3765. Zbl0899.54009MR1458275
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.