Existence and decay in non linear viscoelasticity

Jaime E. Muñoz Rivera; Félix P. Quispe Gómez

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 1, page 1-37
  • ISSN: 0392-4041

Abstract

top
In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space H given by u t t + M ( [ u ] ) A u - 0 t g ( t - τ ) N ( [ u ] ) A u d τ = 0 , in L 2 ( 0 , T ; H ) u ( 0 ) = u 0 , u t ( 0 ) = u 1 where by u t we are denoting [ u ( t ) ] = ( u ( t ) , u t ( t ) , ( A u ( t ) , u t ( t ) ) , A 1 2 u ( t ) 2 , A 1 2 u t ( t ) 2 , A u ( t ) 2 5 A : D A H H is a nonnegative, self-adjoint operator, M , N : R 5 R are C 2 - functions and g : R R is a C 3 -function with appropriates conditions. We show that there exists global solution in time for small initial data. When u t = A 1 2 u 2 and N = 1 , we show the global existence for large initial data u 0 , u 1 taken in the space D A D A 1 / 2 provided they are close enough to Gevrey data. Uniform rate of decay is also proved.

How to cite

top

Muñoz Rivera, Jaime E., and Quispe Gómez, Félix P.. "Existence and decay in non linear viscoelasticity." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 1-37. <http://eudml.org/doc/196152>.

@article{MuñozRivera2003,
abstract = {In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space $H$given by \begin\{gather*\} u\_\{tt\} + M([u]) Au - \int \_\{0\}^\{t\} g(t-\tau ) N([u]) Au \, d\tau = 0, \quad \text\{ in \} L^\{2\}(0, T; H) \\ u(0)=u\_\{0\}, \quad u\_\{t\}(0)=u\_\{1\} \end\{gather*\} where by$[u(t)]$we are denoting \begin\{equation*\} [u(t)]= \left( ( u(t), u\_\{t\}(t), (Au(t), u\_\{t\}(t)), \Vert A^\{\frac\{1\}\{2\}\} u(t) \Vert ^\{2\}, \Vert A^\{\frac\{1\}\{2\}\} u\_\{t\}(t) \Vert ^\{2\}, \Vert A u(t) \Vert ^\{2\} \right) \in \mathbb \{R\}^\{5\} \end\{equation*\}$A \colon D(A) \subset H \to H$ is a nonnegative, self-adjoint operator, $M$, $N \colon \mathbb\{R\}^\{5\} \to \mathbb\{R\}$ are $C^\{2\}$- functions and $g \colon \mathbb\{R\} \to \mathbb\{R\}$ is a $C^\{3\}$-function with appropriates conditions. We show that there exists global solution in time for small initial data. When $[u(t)]= \| A^\{\frac\{1\}\{2\}\} u\|^\{2\}$ and $N=1$, we show the global existence for large initial data $(u_\{0\}, u_\{1\})$ taken in the space $D(A) \times D(A^\{1/2\})$ provided they are close enough to Gevrey data. Uniform rate of decay is also proved.},
author = {Muñoz Rivera, Jaime E., Quispe Gómez, Félix P.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-37},
publisher = {Unione Matematica Italiana},
title = {Existence and decay in non linear viscoelasticity},
url = {http://eudml.org/doc/196152},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Muñoz Rivera, Jaime E.
AU - Quispe Gómez, Félix P.
TI - Existence and decay in non linear viscoelasticity
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 1
EP - 37
AB - In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space $H$given by \begin{gather*} u_{tt} + M([u]) Au - \int _{0}^{t} g(t-\tau ) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} where by$[u(t)]$we are denoting \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \Vert A^{\frac{1}{2}} u(t) \Vert ^{2}, \Vert A^{\frac{1}{2}} u_{t}(t) \Vert ^{2}, \Vert A u(t) \Vert ^{2} \right) \in \mathbb {R}^{5} \end{equation*}$A \colon D(A) \subset H \to H$ is a nonnegative, self-adjoint operator, $M$, $N \colon \mathbb{R}^{5} \to \mathbb{R}$ are $C^{2}$- functions and $g \colon \mathbb{R} \to \mathbb{R}$ is a $C^{3}$-function with appropriates conditions. We show that there exists global solution in time for small initial data. When $[u(t)]= \| A^{\frac{1}{2}} u\|^{2}$ and $N=1$, we show the global existence for large initial data $(u_{0}, u_{1})$ taken in the space $D(A) \times D(A^{1/2})$ provided they are close enough to Gevrey data. Uniform rate of decay is also proved.
LA - eng
UR - http://eudml.org/doc/196152
ER -

References

top
  1. AROSIO, A.- SPAGNOLO, S., Global solution of the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations an their applications, College de France Seminar, Edited by H. Brezis & J. L. Lions, Pitman, London, 6 (1984), 1-26. Zbl0598.35062
  2. BERNSTEIN, S., Sur une classe d'equations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, ser. Mat., 4 (1940), 17-26 (Math. Rev. 2 No. 102). Zbl0026.01901MR2699JFM66.0471.01
  3. DAFERMOS, C. M., An Abstract Volterra Equation with application to linear Viscoelasticity, J. Differential Equations, 7 (1970), 554-589. Zbl0212.45302MR259670
  4. DAFERMOS, C. M.- NOHEL, J. A., Energy methods for non linear hyperbolic Volterra integro-differential equation, Comm. PDE, 4 (1979), 219-278. Zbl0464.45009MR522712
  5. D'ANCONA, P.- SPAGNOLO, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. Zbl0785.35067MR1161092
  6. DICKEY, R. W., Infinite systems of nonlinear oscillation equation related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468. Zbl0218.34015MR247189
  7. DICKEY, R. W., Infinite systems of nonlinear oscillation equations with linear damping, SIAM Journal of Applied Mathematics, 19, No. 1 (1970), 208-214. Zbl0233.34014MR265654
  8. GELFAND, I. M.- VILENKIN, N. YA., Fonctions Généralisées, IV, Academic Press, 1961. 
  9. GREENBERG, J. M.- HU, S. C., The initial value problem for the stretched string, Quarterly of Applied Mathematics (1980), 289-311. Zbl0487.73006MR592197
  10. HUET, D., Décomposition spectrale et opérateurs, Presses Universitaires de France, 1977. Zbl0334.47015MR473900
  11. LAGNESE, J. E., Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International series of Numerical Mathematics, 91, 1989, Birhäuser, Verlag, Bassel. Zbl0699.93070MR1033061
  12. LIONS, J. L., Quelques méthodes de resolution des problèmes aux limites non lineares, Dunod Gauthier Villars, Paris, 1969. Zbl0189.40603MR259693
  13. LIONS, J. L.- DAUTRAY, R., Mathematical Analysis and Numerical Methods for science and Tecnology, 3, Spectral Theory and Applications, Springer Verlag1985, Masson, Paris, 1988. Zbl0766.47001
  14. MEDEIROS, L. A.- MILLA MIRANDA, M. A., On a nonlinear wave equation with damping, Revista de Matemática de la Universidad Complutense de Madrid, 3, No. 2 (1990). Zbl0721.35044MR1081312
  15. PERLA MENZALA, G. A., On global classical solution of a nonlinear wave equation with damping, Appl. Anal., 10 (1980), 179-195. Zbl0441.35037MR577330
  16. MUÑOZ RIVERA, J. E., Asymptotic behaviour in Linear Viscoelasticity, Quarterly of Applied Mathematics, III, 4, (1994), 629-648. Zbl0814.35009
  17. MUÑOZ RIVERA, J. E., Global Solution on a Quasilinear Wave Equation with Memory, Bollettino U.M.I. (7), 8-b (1994), 289-303. Zbl0802.45006MR1278337
  18. NISHIHARA, K., Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984), 125-145. Zbl0555.35094MR763940
  19. NISHIHARA, K., Global existence and Asymptotic behaviour of the solution of some quasilinear hyperbolic equation with linear damping, Funkcialaj Ekvacioj, 32 (1989), 343-355. Zbl0702.35165MR1040163
  20. POHOŽAEV, S. I., On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975), 145-158. 
  21. RENARDY, M.- HRUSA, W. J.- NOHEL, J. A., Mathematical problems in Viscoelasticity, Pitman monograph in Pure and Applied Mathematics, 35, 1987. Zbl0719.73013MR919738
  22. TORREJÓN, R.- YONG, J., On a Quasilinear Wave Equation with memory, Nonlinear Analysis, Theory and Methods & Applications, 16, 1 (1991), 61-78. Zbl0738.35096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.