A note on k-c-semistratifiable spaces and strong β -spaces

Li-Xia Wang; Liang-Xue Peng

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 3, page 287-299
  • ISSN: 0862-7959

Abstract

top
Recall that a space X is a c-semistratifiable (CSS) space, if the compact sets of X are G δ -sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a T 2 -space X is a k-c-semistratifiable space if and only if X has a g function which satisfies the following conditions: (1) For each x X , { x } = { g ( x , n ) : n } and g ( x , n + 1 ) g ( x , n ) for each n . (2) If a sequence { x n } n of X converges to a point x X and y n g ( x n , n ) for each n , then for any convergent subsequence { y n k } k of { y n } n we have that { y n k } k converges to x . By the above characterization, we show that if X is a submesocompact locally k-c-semistratifiable space, then X is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If X = { Int ( X n ) : n } and X n is a closed k-c-semistratifiable space for each n , then X is a k-c-semistratifiable space. In the last part of this note, we show that if X = { X n : n } and X n is a closed strong β -space for each n , then X is a strong β -space.

How to cite

top

Wang, Li-Xia, and Peng, Liang-Xue. "A note on k-c-semistratifiable spaces and strong $\beta $-spaces." Mathematica Bohemica 136.3 (2011): 287-299. <http://eudml.org/doc/197240>.

@article{Wang2011,
abstract = {Recall that a space $X$ is a c-semistratifiable (CSS) space, if the compact sets of $X$ are $G_\delta $-sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a $T_2$-space $X$ is a k-c-semistratifiable space if and only if $X$ has a $g$ function which satisfies the following conditions: (1) For each $x\in X$, $\lbrace x\rbrace =\bigcap \lbrace g(x, n)\colon n\in \mathbb \{N\}\rbrace $ and $ g(x, n+1)\subseteq g(x, n)$ for each $n\in \mathbb \{N\}$. (2) If a sequence $\lbrace x_n\rbrace _\{n\in \mathbb \{N\}\}$ of $X$ converges to a point $x\in X$ and $y_n\in g(x_n, n)$ for each $n\in \mathbb \{N\}$, then for any convergent subsequence $\lbrace y_\{n_k\}\rbrace _\{k\in \mathbb \{N\}\}$ of $\lbrace y_n\rbrace _\{n\in \mathbb \{N\}\}$ we have that $\lbrace y_\{n_k\}\rbrace _\{k\in \mathbb \{N\}\}$ converges to $x$. By the above characterization, we show that if $X$ is a submesocompact locally k-c-semistratifiable space, then $X$ is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If $X=\bigcup \lbrace \{\rm Int\}(X_n)\colon n\in \mathbb \{N\}\rbrace $ and $X_n$ is a closed k-c-semistratifiable space for each $n$, then $X$ is a k-c-semistratifiable space. In the last part of this note, we show that if $X=\bigcup \lbrace X_n\colon n\in \mathbb \{N\}\rbrace $ and $X_n$ is a closed strong $\beta $-space for each $n\in \mathbb \{N\}$, then $X$ is a strong $\beta $-space.},
author = {Wang, Li-Xia, Peng, Liang-Xue},
journal = {Mathematica Bohemica},
keywords = {c-semistratifiable space; k-c-semistratifiable space; submesocompact space; $g$ function; strong $\beta $-space; c-semistratifiable space; k-c-semistratifiable space; submesocompact space; g-function; strong -space},
language = {eng},
number = {3},
pages = {287-299},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on k-c-semistratifiable spaces and strong $\beta $-spaces},
url = {http://eudml.org/doc/197240},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Wang, Li-Xia
AU - Peng, Liang-Xue
TI - A note on k-c-semistratifiable spaces and strong $\beta $-spaces
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 287
EP - 299
AB - Recall that a space $X$ is a c-semistratifiable (CSS) space, if the compact sets of $X$ are $G_\delta $-sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a $T_2$-space $X$ is a k-c-semistratifiable space if and only if $X$ has a $g$ function which satisfies the following conditions: (1) For each $x\in X$, $\lbrace x\rbrace =\bigcap \lbrace g(x, n)\colon n\in \mathbb {N}\rbrace $ and $ g(x, n+1)\subseteq g(x, n)$ for each $n\in \mathbb {N}$. (2) If a sequence $\lbrace x_n\rbrace _{n\in \mathbb {N}}$ of $X$ converges to a point $x\in X$ and $y_n\in g(x_n, n)$ for each $n\in \mathbb {N}$, then for any convergent subsequence $\lbrace y_{n_k}\rbrace _{k\in \mathbb {N}}$ of $\lbrace y_n\rbrace _{n\in \mathbb {N}}$ we have that $\lbrace y_{n_k}\rbrace _{k\in \mathbb {N}}$ converges to $x$. By the above characterization, we show that if $X$ is a submesocompact locally k-c-semistratifiable space, then $X$ is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If $X=\bigcup \lbrace {\rm Int}(X_n)\colon n\in \mathbb {N}\rbrace $ and $X_n$ is a closed k-c-semistratifiable space for each $n$, then $X$ is a k-c-semistratifiable space. In the last part of this note, we show that if $X=\bigcup \lbrace X_n\colon n\in \mathbb {N}\rbrace $ and $X_n$ is a closed strong $\beta $-space for each $n\in \mathbb {N}$, then $X$ is a strong $\beta $-space.
LA - eng
KW - c-semistratifiable space; k-c-semistratifiable space; submesocompact space; $g$ function; strong $\beta $-space; c-semistratifiable space; k-c-semistratifiable space; submesocompact space; g-function; strong -space
UR - http://eudml.org/doc/197240
ER -

References

top
  1. Bennett, H., Byerly, R., Lutzer, D., 10.1016/j.topol.2005.08.011, Topology Appl. 153 (2006), 2169-2181. (2006) Zbl1101.54034MR2239079DOI10.1016/j.topol.2005.08.011
  2. Borges, C. R., 10.2140/pjm.1966.17.1, Pacific J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982DOI10.2140/pjm.1966.17.1
  3. Creede, G. D., 10.2140/pjm.1970.32.47, Pacific J. Math. 32 (1970), 47-54. (1970) Zbl0189.23304MR0254799DOI10.2140/pjm.1970.32.47
  4. Engelking, R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann, Berlin, revised ed. 1989. Zbl0684.54001MR1039321
  5. Gao, Z. M., On g -function separation, Questions Answers Gen. Topology 4 (1986), 47-57. (1986) Zbl0597.54027MR0852951
  6. Gao, Z. M., The closed images of metric spaces and Fréchet -spaces, Questions Answers Gen. Topology 5 (1987), 281-291. (1987) Zbl0643.54035MR0917886
  7. Good, C., Knight, R., Stares, I., 10.1016/S0166-8641(98)00128-X, Topology Appl. 101 (2000), 281-298. (2000) Zbl0938.54026MR1733809DOI10.1016/S0166-8641(98)00128-X
  8. Gruenhage, G., Generalized Metric Spaces. Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984). (1984) MR0776629
  9. Hodel, R. E., 10.2140/pjm.1971.38.641, Pacific J. Math. 38 (1971), 641-652. (1971) MR0307169DOI10.2140/pjm.1971.38.641
  10. Kemoto, N., Yajima, Y., 10.1016/j.topol.2008.12.016, Topology Appl. 156 (2009), 1348-1354. (2009) Zbl1169.54003MR2502009DOI10.1016/j.topol.2008.12.016
  11. Kyung, B. L., 10.2140/pjm.1979.81.435, Pacific J. Math. 81 (1979), 435-446. (1979) MR0547610DOI10.2140/pjm.1979.81.435
  12. Lin, S., A note on k-semistratifiable spaces, J. Suzhou University (Natural Science) 4 (1988), 357-363. (1988) 
  13. Lin, S., Generalized Metric Spaces and Mappings, Chinese Science Publishers, Beijing (1995). (1995) MR1375020
  14. Lin, S., 10.21099/tkbjm/1496163383, Tsukuba J. Math. 21 (1997), 809-815. (1997) Zbl1025.54501MR1603848DOI10.21099/tkbjm/1496163383
  15. Lutzer, D. J., 10.1016/0016-660X(71)90109-7, General Topology Appl. 1 (1971), 43-48. (1971) Zbl0211.25704MR0296893DOI10.1016/0016-660X(71)90109-7
  16. Martin, H. W., 10.4153/CJM-1973-086-0, Can. J. Math. 4 (1973), 840-841. (1973) Zbl0247.54031MR0328875DOI10.4153/CJM-1973-086-0
  17. Peng, L.-X., Wang, L. X., On C S S spaces and related conclusions, Chinese Acta Math. Sci. (Chin. Ser. A) 30 (2010), 358-363. (2010) Zbl1224.54065MR2664833
  18. Peng, L.-X., Lin, S., Monotone spaces and metrization theorems, Chinese Acta Math. Sinica (Chin. Ser.) 46 (2003), 1225-1232. (2003) Zbl1045.54010MR2035746
  19. Yajima, Y., Strong β -spaces and their countable products, Houston J. Math. 33 (2007), 531-540. (2007) Zbl1243.54046MR2308994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.