Eigenvalue problems with indefinite weight

Andrzej Szulkin; Michel Willem

Studia Mathematica (1999)

  • Volume: 135, Issue: 2, page 191-201
  • ISSN: 0039-3223

Abstract

top
We consider the linear eigenvalue problem -Δu = λV(x)u, u D 0 1 , 2 ( Ω ) , and its nonlinear generalization - Δ p u = λ V ( x ) | u | p - 2 u , u D 0 1 , p ( Ω ) . The set Ω need not be bounded, in particular, Ω = N is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues λ n .

How to cite

top

Szulkin, Andrzej, and Willem, Michel. "Eigenvalue problems with indefinite weight." Studia Mathematica 135.2 (1999): 191-201. <http://eudml.org/doc/216650>.

@article{Szulkin1999,
abstract = {We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^\{1,2\}_0(Ω)$, and its nonlinear generalization $-Δ_\{p\}u = λV(x)|u|^\{p-2\}u$, $u ∈ D^\{1,p\}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.},
author = {Szulkin, Andrzej, Willem, Michel},
journal = {Studia Mathematica},
keywords = {eigenvalue problem; Laplacian; p-Laplacian; indefinite weight; -Laplacian},
language = {eng},
number = {2},
pages = {191-201},
title = {Eigenvalue problems with indefinite weight},
url = {http://eudml.org/doc/216650},
volume = {135},
year = {1999},
}

TY - JOUR
AU - Szulkin, Andrzej
AU - Willem, Michel
TI - Eigenvalue problems with indefinite weight
JO - Studia Mathematica
PY - 1999
VL - 135
IS - 2
SP - 191
EP - 201
AB - We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^{1,2}_0(Ω)$, and its nonlinear generalization $-Δ_{p}u = λV(x)|u|^{p-2}u$, $u ∈ D^{1,p}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.
LA - eng
KW - eigenvalue problem; Laplacian; p-Laplacian; indefinite weight; -Laplacian
UR - http://eudml.org/doc/216650
ER -

References

top
  1. [1] W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in R n , Proc. Amer. Math. Soc. 116 (1992), 701-706. Zbl0764.35031
  2. [2] W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242. Zbl0922.35114
  3. [3] K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on R N , Proc. Amer. Math. Soc. 109 (1990), 147-155. Zbl0726.35089
  4. [4] K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on k , Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 561-569. Zbl0804.35095
  5. [5] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171. Zbl0789.58021
  6. [6] P. Drábek and Y. X. Huang, Bifurcation problems for the p-Laplacian in R N , Trans. Amer. Math. Soc. 349 (1997), 171-188. Zbl0868.35010
  7. [7] P. Drábek, Z. Moudan and A. Touzani, Nonlinear homogeneous eigenvalue problem in R N : nonstandard variational approach, Comm. Math. Univ. Carolin. 38 (1997), 421-431. Zbl0940.35150
  8. [8] J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin, Principal eigenvalues for some quasilinear elliptic equations on N , Adv. Differential Equations 2 (1997), 981-1003. Zbl1023.35505
  9. [9] J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476. 
  10. [10] Y. X. Huang, Eigenvalues of the p-Laplacian in R N with indefinite weight, Comm. Math. Univ. Carolin. 36 (1995), 519-527. Zbl0839.35097
  11. [11] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494. Zbl0593.35119
  12. [12] E. H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, R.I., 1997. 
  13. [13] V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985. 
  14. [14] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986. 
  15. [15] G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205-223. Zbl0908.35085
  16. [16] M. Struwe, Variational Methods, Springer, Berlin, 1990. 
  17. [17] A. Szulkin, Ljusternik-Schnirelmann theory on C 1 -manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. Zbl0661.58009
  18. [18] A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42-66. Zbl0920.35044
  19. [19] M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995. 
  20. [20] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.