Finite subschemes of abelian varieties and the Schottky problem

Martin G. Gulbrandsen[1]; Martí Lahoz[2]

  • [1] Stord/Haugesund University College, Bjørnsons gate 45 NO-5528 Haugesund (Norway)
  • [2] Universitat de Barcelona Departament d’Àlgebra i Geometria Gran Via, 585, 08007 Barcelona (Spain)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 2039-2064
  • ISSN: 0373-0956

Abstract

top
The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties ( A , Θ ) of dimension g , by the existence of g + 2 points Γ A in special position with respect to 2 Θ , but general with respect to Θ , and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes Γ .

How to cite

top

Gulbrandsen, Martin G., and Lahoz, Martí. "Finite subschemes of abelian varieties and the Schottky problem." Annales de l’institut Fourier 61.5 (2011): 2039-2064. <http://eudml.org/doc/219804>.

@article{Gulbrandsen2011,
abstract = {The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A, \Theta )$ of dimension $g$, by the existence of $g + 2$ points $\Gamma \subset A$ in special position with respect to $2\Theta $, but general with respect to $\Theta $, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma $.},
affiliation = {Stord/Haugesund University College, Bjørnsons gate 45 NO-5528 Haugesund (Norway); Universitat de Barcelona Departament d’Àlgebra i Geometria Gran Via, 585, 08007 Barcelona (Spain)},
author = {Gulbrandsen, Martin G., Lahoz, Martí},
journal = {Annales de l’institut Fourier},
keywords = {Principally polarized abelian varieties; Jacobians; Schotty problem; finite schemes; Abel-Jacobi curves; principally polarized abelian varieties},
language = {eng},
number = {5},
pages = {2039-2064},
publisher = {Association des Annales de l’institut Fourier},
title = {Finite subschemes of abelian varieties and the Schottky problem},
url = {http://eudml.org/doc/219804},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Gulbrandsen, Martin G.
AU - Lahoz, Martí
TI - Finite subschemes of abelian varieties and the Schottky problem
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2039
EP - 2064
AB - The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A, \Theta )$ of dimension $g$, by the existence of $g + 2$ points $\Gamma \subset A$ in special position with respect to $2\Theta $, but general with respect to $\Theta $, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma $.
LA - eng
KW - Principally polarized abelian varieties; Jacobians; Schotty problem; finite schemes; Abel-Jacobi curves; principally polarized abelian varieties
UR - http://eudml.org/doc/219804
ER -

References

top
  1. C. Birkenhake, H. Lange, Complex abelian varieties, 302 (2004), Springer-Verlag, Berlin Zbl0779.14012MR2062673
  2. O. Debarre, Fulton-Hansen and Barth-Lefschetz theorems for subvarieties of abelian varieties, J. Reine Angew. Math. 467 (1995), 187-197 Zbl0833.14027MR1355928
  3. D. Eisenbud, M. Green, J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 295-324 Zbl0871.14024MR1376653
  4. D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), 15-30 Zbl0804.14002MR1129837
  5. D. Eisenbud, J. Harris, An intersection bound for rank 1 loci, with applications to Castelnuovo and Clifford theory, J. Algebraic Geom. 1 (1992), 31-60 Zbl0798.14029MR1129838
  6. P. Griffiths, J. Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), 461-505 Zbl0423.14001MR512429
  7. S. Grushevsky, Erratum to “Cubic equations for the hyperelliptic locus”, Asian J. Math. 9 (2005), 273-274 Zbl1100.14523MR2176610
  8. R. C. Gunning, Some curves in abelian varieties, Invent. Math. 66 (1982), 377-389 Zbl0485.14009MR662597
  9. I. Krichever, Characterizing Jacobians via trisecants of the Kummer Variety, (2006) Zbl1215.14031
  10. P. Le Barz, Formules pour les trisécantes des surfaces algébriques, Enseign. Math. (2) 33 (1987), 1-66 Zbl0629.14037MR896383
  11. S. Mukai, Duality between D ( X ) and D ( X ^ ) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175 Zbl0417.14036MR607081
  12. D. Mumford, Curves and their Jacobians, (1975), The University of Michigan Press, Ann Arbor, Mich. Zbl0316.14010MR419430
  13. G. Pareschi, M. Popa, Castelnuovo theory and the geometric Schottky problem, J. Reine Angew. Math. 615 (2008), 25-44 Zbl1142.14030MR2384330
  14. G. Pareschi, M. Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), 209-222 Zbl1131.14049MR2349774
  15. Z. Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981), 459-479 Zbl0474.14016MR604839
  16. G. E. Welters, A criterion for Jacobi varieties, Ann. of Math. (2) 120 (1984), 497-504 Zbl0574.14027MR769160

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.