The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

On the Fourier transform of the symmetric decreasing rearrangements

Philippe Jaming[1]

  • [1] Université d’Orléans - Faculté des Sciences MAPMO UMR CNRS 6628 Fédération Denis Poisson, FR CNRS 2964 BP 6759 45067 Orléans Cedex 2 (France) and Université Bordeaux 1 Institut de Mathématiques de Bordeaux UMR CNRS 5251 351, cours de la Libération 33405 TALENCE cedex (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 53-77
  • ISSN: 0373-0956

Abstract

top
Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the L 2 behavior of a Fourier transform of a function over a small set is controlled by the L 2 behavior of the Fourier transform of its symmetric decreasing rearrangement. In the L 1 case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give a simple proof and an extension of a result of Lieb about the smoothness of a rearrangement. Finally, a straightforward application to solutions of the free Shrödinger equation is given.

How to cite

top

Jaming, Philippe. "On the Fourier transform of the symmetric decreasing rearrangements." Annales de l’institut Fourier 61.1 (2011): 53-77. <http://eudml.org/doc/219848>.

@article{Jaming2011,
abstract = {Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the $L^2$ behavior of a Fourier transform of a function over a small set is controlled by the $L^2$ behavior of the Fourier transform of its symmetric decreasing rearrangement. In the $L^1$ case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give a simple proof and an extension of a result of Lieb about the smoothness of a rearrangement. Finally, a straightforward application to solutions of the free Shrödinger equation is given.},
affiliation = {Université d’Orléans - Faculté des Sciences MAPMO UMR CNRS 6628 Fédération Denis Poisson, FR CNRS 2964 BP 6759 45067 Orléans Cedex 2 (France) and Université Bordeaux 1 Institut de Mathématiques de Bordeaux UMR CNRS 5251 351, cours de la Libération 33405 TALENCE cedex (France)},
author = {Jaming, Philippe},
journal = {Annales de l’institut Fourier},
keywords = {Fourier transform; rearrangement inequalities; Bessel functions},
language = {eng},
number = {1},
pages = {53-77},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Fourier transform of the symmetric decreasing rearrangements},
url = {http://eudml.org/doc/219848},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Jaming, Philippe
TI - On the Fourier transform of the symmetric decreasing rearrangements
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 53
EP - 77
AB - Inspired by work of Montgomery on Fourier series and Donoho-Strak in signal processing, we investigate two families of rearrangement inequalities for the Fourier transform. More precisely, we show that the $L^2$ behavior of a Fourier transform of a function over a small set is controlled by the $L^2$ behavior of the Fourier transform of its symmetric decreasing rearrangement. In the $L^1$ case, the same is true if we further assume that the function has a support of finite measure.As a byproduct, we also give a simple proof and an extension of a result of Lieb about the smoothness of a rearrangement. Finally, a straightforward application to solutions of the free Shrödinger equation is given.
LA - eng
KW - Fourier transform; rearrangement inequalities; Bessel functions
UR - http://eudml.org/doc/219848
ER -

References

top
  1. R. Askey, J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307 Zbl0244.42002MR338481
  2. John J. Benedetto, Hans P. Heinig, Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), 1-37 Zbl1034.42010MR1953070
  3. A. Burchard, Steiner symmetrization is continuous in W 1 , p , Geom. Funct. Anal. 7 (1997), 823-860 Zbl0912.46034MR1475547
  4. Andrea Cianchi, Second-order derivatives and rearrangements, Duke Math. J. 105 (2000), 355-385 Zbl1017.46023MR1801766
  5. R. G. Cooke, Gibbs’ phenomenon in Fourier-Bessel series and integrals, Proc. London Math. Soc. 27 (1927), 171-192 Zbl53.0337.03
  6. R. G. Cooke, A monotonic property of Bessel functions, J. London Math. Soc. 12 (1937), 180-185 Zbl63.0329.02
  7. David L. Donoho, Philip B. Stark, Rearrangements and smoothing, Tech. Rep. (1988) 
  8. David L. Donoho, Philip B. Stark, A note on rearrangements, spectral concentration, and the zero-order prolate spheroidal wavefunction, IEEE Trans. Inform. Theory 39 (1993), 257-260 Zbl0767.33018MR1211505
  9. William Feller, An introduction to probability theory and its applications. Vol. II., (1971), John Wiley & Sons Inc., New York Zbl0138.10207MR270403
  10. George Gasper, Positive integrals of Bessel functions, SIAM J. Math. Anal. 6 (1975), 868-881 Zbl0313.33013MR390318
  11. Loukas Grafakos, Classical and modern Fourier analysis, (2004), Pearson Education, Inc., Upper Saddle River, NJ Zbl1148.42001MR2449250
  12. Victor Havin, Burglind Jöricke, The uncertainty principle in harmonic analysis, 28 (1994), Springer-Verlag, Berlin Zbl0827.42001MR1303780
  13. Philippe Jaming, Nazarov’s uncertainty principles in higher dimension, J. Approx. Theory 149 (2007), 30-41 Zbl1232.42013MR2371612
  14. M. Jodeit, A. Tochinsky, Inequalities for the Fourier Transform, Studia Math. 37 (1971), 245-276 Zbl0224.46037MR300073
  15. W. B. Jurkat, G. Sampson, On maximal rearrangement inequalities for the Fourier transform, Trans. Amer. Math. Soc. 282 (1984), 625-643 Zbl0537.42029MR732111
  16. W. B. Jurkat, G. Sampson, On rearrangement and weighted inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270 Zbl0536.42013MR733899
  17. Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, 1150 (1985), Springer-Verlag, Berlin Zbl0593.35002MR810619
  18. Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349-374 Zbl0527.42011MR717827
  19. Elliott H. Lieb, Michael Loss, Analysis, 14 (1997), American Mathematical Society, Providence, RI Zbl0873.26002MR1415616
  20. E. Makai, On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952), 165-172 Zbl0048.32302MR54103
  21. Jolanta K. Misiewicz, Donald St. P. Richards, Positivity of integrals of Bessel functions, SIAM J. Math. Anal. 25 (1994), 596-601 Zbl0799.33003MR1266579
  22. Hugh L. Montgomery, A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26 (1976), v, 29-34 Zbl0318.42009MR407517
  23. F. L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5 (1993), 3-66 Zbl0801.42001MR1246419
  24. Gilles Pisier, The volume of convex bodies and Banach space geometry, 94 (1989), Cambridge University Press, Cambridge Zbl0698.46008MR1036275
  25. John Steinig, On a monotonicity property of Bessel functions, Math. Z. 122 (1971), 363-365 Zbl0208.32802MR447654
  26. Terence Tao, Nonlinear dispersive equations, 106 (2006), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1106.35001MR2233925
  27. Anders Vretblad, Fourier analysis and its applications, 223 (2003), Springer-Verlag, New York Zbl1032.42001MR1992764
  28. G. N. Watson, A treatise on the theory of Bessel functions, (1995), Cambridge University Press, Cambridge Zbl0849.33001MR1349110
  29. David Vernon Widder, The Laplace Transform, (1941), Princeton University Press, Princeton, N. J. Zbl0063.08245MR5923
  30. Antoni Zygmund, Trigonometrical series, (1955), Dover Publications, New York Zbl0065.05604MR72976

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.