Averaged large deviations for random walk in a random environment
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 853-868
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topYilmaz, Atilla. "Averaged large deviations for random walk in a random environment." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 853-868. <http://eudml.org/doc/240145>.
@article{Yilmaz2010,
abstract = {In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling (resp. nestling). We then identify the unique minimizer of Varadhan’s variational formula at any velocity in .},
author = {Yilmaz, Atilla},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {disordered media; rare events; rate function; regeneration times},
language = {eng},
number = {3},
pages = {853-868},
publisher = {Gauthier-Villars},
title = {Averaged large deviations for random walk in a random environment},
url = {http://eudml.org/doc/240145},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Yilmaz, Atilla
TI - Averaged large deviations for random walk in a random environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 853
EP - 868
AB - In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling (resp. nestling). We then identify the unique minimizer of Varadhan’s variational formula at any velocity in .
LA - eng
KW - disordered media; rare events; rate function; regeneration times
UR - http://eudml.org/doc/240145
ER -
References
top- [1] N. Berger. Limiting velocity of high-dimensional random walk in random environment. Ann. Probab. 36 (2008) 728–738. Zbl1145.60051MR2393995
- [2] F. Comets, N. Gantert and O. Zeitouni. Quenched, annealed and functional large deviations for one dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000) 65–114. Zbl0965.60098MR1785454
- [3] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. An invariance principle for reversible Markov processes with applications to random motions in random environments. J. Stat. Phys. 55 (1989) 787–855. Zbl0713.60041MR1003538
- [4] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications, 2nd edition. Springer, New York, 1998. Zbl1177.60035MR1619036
- [5] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time. IV. Comm. Pure Appl. Math. 36 (1983) 183–212. Zbl0512.60068MR690656
- [6] A. Greven and F. den Hollander. Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381–1428. Zbl0820.60054MR1303649
- [7] C. Kipnis and S. R. S. Varadhan. A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Comm. Math. Phys. 104 (1986) 1–19. Zbl0588.60058MR834478
- [8] S. M. Kozlov. The averaging method and walks in inhomogeneous environments. Russian Math. Surveys (Uspekhi Mat. Nauk) 40 (1985) 73–145. Zbl0615.60063MR786087
- [9] S. G. Krantz and H. R. Parks. The Implicit Function Theorem: History, Theory, and Applications. Birkhäuser, Boston, 2002. Zbl1012.58003MR1894435
- [10] S. Olla. Homogenization of Diffusion Processes in Random Fields. Ecole Polytecnique, Palaiseau, 1994.
- [11] G. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating random coefficients. In Random Fields. J. Fritz and D. Szasz (eds). Janyos Bolyai Series. North-Holland, Amsterdam, 1981. Zbl0499.60059MR712714
- [12] J. Peterson. Limiting distributions and large deviations for random walks in random environments. Ph.D. thesis, Univ. Minnesota, 2008. MR2711962
- [13] J. Peterson and O. Zeitouni. On the annealed large deviation rate function for a multi-dimensional random walk in random environment. ALEA. To appear. Preprint, 2008. Available at arXiv:0812.3619. Zbl1276.60127MR2557875
- [14] F. Rassoul-Agha. Large deviations for random walks in a mixing random environment and other (non-Markov) random walks. Comm. Pure Appl. Math. 57 (2004) 1178–1196. Zbl1051.60033MR2059678
- [15] J. Rosenbluth. Quenched large deviations for multidimensional random walk in random environment: A variational formula. Ph.D. thesis, Courant Institute, New York Univ., 2006. Available at arXiv:0804.1444. MR2708406
- [16] A. S. Sznitman and M. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999) 1851–1869. Zbl0965.60100MR1742891
- [17] A. S. Sznitman. Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. 2 (2000) 93–143. Zbl0976.60097MR1763302
- [18] A. S. Sznitman. On a class of transient random walks in random environment. Ann. Probab. 29 (2001) 724–765. Zbl1017.60106MR1849176
- [19] A. S. Sznitman. Lectures on random motions in random media. In Ten Lectures on Random Media. DMV-Lectures 32. Birkhäuser, Basel, 2002. Zbl1075.60128MR1890289
- [20] S. R. S. Varadhan. Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 (2003) 1222–1245. Zbl1042.60071MR1989232
- [21] A. Yilmaz. Large deviations for random walk in a random environment. Ph.D. thesis, Courant Institute, New York Univ., 2008. Available at arXiv:0809.1227. Zbl1168.60370MR2712324
- [22] A. Yilmaz. Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math. 62 (2009) 1033–1075. Zbl1168.60370MR2531552
- [23] A. Yilmaz. On the equality of the quenched and averaged large deviation rate functions for high-dimensional ballistic random walk in a random environment. Preprint, 2009. Available at arXiv:0903.0410. MR2531552
- [24] O. Zeitouni. Random walks in random environments. J. Phys. A: Math. Gen. 39 (2006) R433–R464. Zbl1108.60085MR2261885
- [25] M. P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446–1476. Zbl0937.60095MR1675027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.