Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

Loula Fezoui; Stéphane Lanteri; Stéphanie Lohrengel[1]; Serge Piperno

  • [1] Dieudonné Lab., UNSA, UMR CNRS 6621, Parc Valrose, 06108 Nice Cedex 2, France.

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 6, page 1149-1176
  • ISSN: 0764-583X

Abstract

top
A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved for metallic cavities. Convergence is proved for k Discontinuous elements on tetrahedral meshes, as well as a discrete divergence preservation property. Promising numerical examples with low-order elements show the potential of the method.

How to cite

top

Fezoui, Loula, et al. "Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.6 (2005): 1149-1176. <http://eudml.org/doc/244803>.

@article{Fezoui2005,
abstract = {A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved for metallic cavities. Convergence is proved for $\mathbb \{P\}_k$ Discontinuous elements on tetrahedral meshes, as well as a discrete divergence preservation property. Promising numerical examples with low-order elements show the potential of the method.},
affiliation = {Dieudonné Lab., UNSA, UMR CNRS 6621, Parc Valrose, 06108 Nice Cedex 2, France.},
author = {Fezoui, Loula, Lanteri, Stéphane, Lohrengel, Stéphanie, Piperno, Serge},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {electromagnetics; finite volume methods; discontinuous Galerkin methods; centered fluxes; leap-frog time scheme; $L^2$ stability; unstructured meshes; absorbing boundary condition; convergence; divergence preservation},
language = {eng},
number = {6},
pages = {1149-1176},
publisher = {EDP-Sciences},
title = {Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes},
url = {http://eudml.org/doc/244803},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Fezoui, Loula
AU - Lanteri, Stéphane
AU - Lohrengel, Stéphanie
AU - Piperno, Serge
TI - Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 6
SP - 1149
EP - 1176
AB - A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved for metallic cavities. Convergence is proved for $\mathbb {P}_k$ Discontinuous elements on tetrahedral meshes, as well as a discrete divergence preservation property. Promising numerical examples with low-order elements show the potential of the method.
LA - eng
KW - electromagnetics; finite volume methods; discontinuous Galerkin methods; centered fluxes; leap-frog time scheme; $L^2$ stability; unstructured meshes; absorbing boundary condition; convergence; divergence preservation
UR - http://eudml.org/doc/244803
ER -

References

top
  1. [1] F. Bourdel, P.-A. Mazet and P. Helluy, Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Comput. Method Appl. Sci. Engrg. (1991) 405–422. 
  2. [2] N. Canouet, L. Fezoui and S. Piperno, A discontinuous galerkin method for 3d maxwell’s equation on non-conforming grids, in Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation. G.C. Cohen Ed., Springer, Jyvskyl, Finland (2003) 389–394. Zbl1075.78002
  3. [3] P. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
  4. [4] J.-P. Cioni, L. Fezoui, L. Anne and F. Poupaud, A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997) 359–365. 
  5. [5] B. Cockburn, G.E. Karniadakis and C.-W. Shu, Eds., Discontinuous Galerkin methods. Theory, computation and applications. Lect. Notes Comput. Sci. Eng. 11 (2000). Zbl0935.00043MR1842160
  6. [6] B. Cockburn, F. Li and C.-W. Shu, Locally divergence-free discontinuous galerkin methods for the maxwell equations. J. Comput. Phys. 194 (2004) 588–610. Zbl1049.78019
  7. [7] A. Elmkies and P. Joly, Éléments finis d’arête et condensation de masse pour les équations de Maxwell: le cas de dimension 3. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1217–1222. Zbl0893.65068
  8. [8] R. Eymard, T. Gallouët and R. Herbin, The finite volume method, Handbook Numer. Anal., North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford 7-3 (2000). Zbl0981.65095MR1804748
  9. [9] R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1998) 935–952. Zbl0923.65065
  10. [10] J. Hesthaven and C. Teng, Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21 (2000) 2352–2380. Zbl0959.65112
  11. [11] J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I: Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (2002) 186–221. Zbl1014.78016
  12. [12] J. Hesthaven and T. Warburton, High-order nodal discontinuous galerkin methods for the maxwell eigenvalue problem. Philos. Trans. Roy. Soc. London Ser. A 362 (2004) 493–524. Zbl1078.78014
  13. [13] J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell’s equations. J. Comput. Phys. 151 (1999) 881–909. Zbl0956.78015
  14. [14] P. Joly and C. Poirier, A new second order 3D edge element on tetrahedra for time dependent Maxwell’s equations, in Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation, A. Bermudez, D. Gomez, C. Hazard, P. Joly, J.-E. Roberts, Eds., SIAM, Santiago de Compostella, Spain (2000) 842–847. Zbl0995.78040
  15. [15] D.A. Kopriva, S.L. Woodruff and M.Y. Hussaini, Discontinuous spectral element approximation of Maxwell’s equations, in Discontinuous Galerkin methods. Theory, computation and applications., B. Cockburn and G.E. Karniadakis, C.-W. Shu, Eds. Lect. Notes Comput. Sci. Eng. 11 (2000) 355–362. Zbl0957.78023
  16. [16] D. Kröner, M. Rokyta and M. Wierse, A Lax-Wendroff type theorem for upwind finite volume schemes in 2-D. J. Numer. Math. 4 (1996) 279–292. Zbl0872.65093
  17. [17] S. Lohrengel and M. Remaki, A FV scheme for Maxwell’s equations: Convergence analysis on unstructured meshes, in Finite Volumes for Complex Applications III, R. Herbin, D. Kröner, Eds., Hermes Penton Science, London, Porquerolles, France (2002) 219–226. Zbl1062.78017
  18. [18] F. Poupaud and M. Remaki, Existence and uniqueness of the Maxwell’s system solutions in heterogeneous and irregular media. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 99–103. Zbl0942.78006
  19. [19] S. Piperno, L 2 -stability of the upwind first order finite volume scheme for the Maxwell equation in two and three dimensions on arbitrary unstructured meshes. ESAIM: M2AN 34 (2000) 139–158. Zbl0949.65104
  20. [20] S. Piperno, Schémas en éléments finis discontinus localement raffinés en espace et en temps pour les équations de Maxwell 1D. INRIA Research report 4986 (2003). 
  21. [21] S. Piperno, M. Remaki and L. Fezoui, A non-diffusive finite volume scheme for the 3D Maxwell equations on unstructured meshes. SIAM J. Numer. Anal. 39 (2002) 2089–2108. Zbl1221.65238
  22. [22] M. Remaki, A new finite volume scheme for solving Maxwell’s system. COMPEL 19 (2000) 913–931. Zbl0994.78021
  23. [23] J. Shang and R. Fithen, A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378–394. Zbl0848.65087
  24. [24] A. Taflove, Re-inventing electromagnetics: supercomputing solution of Maxwell’s equations via direct time integration on space grids. AIAA paper 92–0333 (1992). 
  25. [25] J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267–295. Zbl0823.65087
  26. [26] T. Warburton, Application of the discontinuous Galerkin method to Maxwell’s equations using unstructured polymorphic h p -finite elements, in Discontinuous Galerkin methods. Theory, computation and applications, B. Cockburn, G.E. Karniadakis, C.-W. Shu, Eds. Lect. Notes Comput. Sci. Eng. 11 (2000) 451–458. Zbl0957.78011
  27. [27] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE T. Antenn. Prop. AP-16 (1966) 302–307. Zbl1155.78304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.