Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix

Imran Rashid; Martin Gavalec; Sergeĭ Sergeev

Kybernetika (2012)

  • Volume: 48, Issue: 2, page 309-328
  • ISSN: 0023-5954

Abstract

top
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.

How to cite

top

Rashid, Imran, Gavalec, Martin, and Sergeev, Sergeĭ. "Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix." Kybernetika 48.2 (2012): 309-328. <http://eudml.org/doc/246141>.

@article{Rashid2012,
abstract = {Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.},
author = {Rashid, Imran, Gavalec, Martin, Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector; Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector},
language = {eng},
number = {2},
pages = {309-328},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix},
url = {http://eudml.org/doc/246141},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Rashid, Imran
AU - Gavalec, Martin
AU - Sergeev, Sergeĭ
TI - Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 2
SP - 309
EP - 328
AB - Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
LA - eng
KW - Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector; Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
UR - http://eudml.org/doc/246141
ER -

References

top
  1. K. Cechlárová, 10.1016/0024-3795(92)90302-Q, Lin. Algebra Appl. 175 (1992), 63-73. Zbl0756.15014MR1179341DOI10.1016/0024-3795(92)90302-Q
  2. K. Cechlárová, Efficient computation of the greatest eigenvector in fuzzy algebra., Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194
  3. G. Cohen, D. Dubois, J. P. Quadrat, M. Viot, 10.1109/TAC.1985.1103925, IEE Trans. Automat. Control AC-30 (1985), 210-220. MR0778424DOI10.1109/TAC.1985.1103925
  4. R. A. Cuninghame-Green, 10.1057/jors.1962.10, Oper. Res. Quart. 13 (1962), 95-100. DOI10.1057/jors.1962.10
  5. R. A. Cuninghame-Green, Minimax Algebra., Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. Zbl0739.90073MR0580321
  6. R. A. Cuninghame-Green, Minimax Algebra and Application., In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995. 
  7. M. Gavalec, 10.1016/S0024-3795(01)00488-8, Lin. Algebra Appl. 345 (2002), 149-167. Zbl0994.15010MR1883271DOI10.1016/S0024-3795(01)00488-8
  8. M. Gavalec, I. Rashid, Monotone eigenspace structure of a max-drast fuzzy matrix., In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167. 
  9. M. Gavalec, I. Rashid, S. Sergeev, Monotone eigenspace structure of a max-prod fuzzy matrix., In preparation. 
  10. M. Gondran, Valeurs propres et vecteurs propres en classification hiérarchique., RAIRO Informatique Théorique 10 (1976), 39-46. MR0411059
  11. M. Gondran, M. Minoux, Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory., In: Proc. 9th Prog. Symp. 1976, pp. 133-148. Zbl0453.05028
  12. M. Gondran, M. Minoux, Valeurs propres et vecteurs propres en théorie des graphes., Colloq. Internat. CNRS (1978), 181-183. 
  13. G. Olsder, Eigenvalues of dynamic max-min systems., In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. Zbl0747.93014
  14. E. Sanchez, 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
  15. Yi-Jia Tan, 10.1016/S0024-3795(98)10105-2, Lin. Algebra Appl. 283 (1998), 257-272. MR1657171DOI10.1016/S0024-3795(98)10105-2
  16. Yi-Jia Tan, 10.1016/S0024-3795(00)00168-3, Lin. Algebra Appl. 336 (2001), 1-14. MR1855387DOI10.1016/S0024-3795(00)00168-3
  17. U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structure., Ann. Discrete Math. 10, North Holland, Amsterdam 1981. MR0609751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.