Second variational derivative of local variational problems and conservation laws
Marcella Palese; Ekkehart Winterroth; E. Garrone
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 395-403
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPalese, Marcella, Winterroth, Ekkehart, and Garrone, E.. "Second variational derivative of local variational problems and conservation laws." Archivum Mathematicum 047.5 (2011): 395-403. <http://eudml.org/doc/246837>.
@article{Palese2011,
abstract = {We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one.},
author = {Palese, Marcella, Winterroth, Ekkehart, Garrone, E.},
journal = {Archivum Mathematicum},
keywords = {fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law; fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law},
language = {eng},
number = {5},
pages = {395-403},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Second variational derivative of local variational problems and conservation laws},
url = {http://eudml.org/doc/246837},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Palese, Marcella
AU - Winterroth, Ekkehart
AU - Garrone, E.
TI - Second variational derivative of local variational problems and conservation laws
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 395
EP - 403
AB - We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that the corresponding local system of Euler–Lagrange forms is variationally equivalent to a global one.
LA - eng
KW - fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law; fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative; cohomology; symmetry; conservation law
UR - http://eudml.org/doc/246837
ER -
References
top- Allemandi, G., Francaviglia, M., Raiteri, M., 10.1088/0264-9381/20/3/307, Classical Quantum Gravity 20 (3) (2003), 483–506. (2003) MR1957170DOI10.1088/0264-9381/20/3/307
- Anderson, I. M., Duchamp, T., 10.2307/2374195, Amer. Math. J. 102 (1980), 781–868. (1980) Zbl0454.58021MR0590637DOI10.2307/2374195
- Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M., Conservation laws for non-global Lagrangians, Univ. Iagel. Acta Math. 41 (2003), 319–331. (2003) Zbl1060.70034MR2084774
- Brajerčík, J., Krupka, D., 10.1063/1.1901323, J. Math. Phys. 46 (5) (2005), 15, 052903. (2005) Zbl1110.58011MR2143003DOI10.1063/1.1901323
- Dedecker, P., Tulczyjew, W. M., Spectral sequences and the inverse problem of the calculus of variations, Lecture Notes in Math., vol. 836, Springer–Verlag, 1980, pp. 498–503. (1980) Zbl0482.49027MR0607719
- Eck, D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981), 1–48. (1981) Zbl0493.53052MR0632164
- Ferraris, M., Francaviglia, M., Raiteri, M., 10.1088/0264-9381/20/18/312, Classical Quantum Gravity 20 (2003), 4043–4066. (2003) MR2017333DOI10.1088/0264-9381/20/18/312
- Ferraris, M., Palese, M., Winterroth, E., 10.1016/j.difgeo.2011.04.011, Differential Geom. Appl. 29 (2011), S80–S85. (2011) Zbl1233.58002MR2832003DOI10.1016/j.difgeo.2011.04.011
- Francaviglia, M., Palese, M., Second order variations in variational sequences, Steps in differential geometry. Proceedings of the colloquium on differential geometry (Kozma, L. et al., ed.), Univ. Debrecen, Institute of Mathematics and Informatics, 2001, Debrecen, Hungary, July 25-30, 2000, pp. 119–130. (2001) Zbl0977.58019MR1859293
- Francaviglia, M., Palese, M., Vitolo, R., 10.1023/A:1021735824163, Czechoslovak Math. J. 52 (127) (1) (2002), 197–213. (2002) Zbl1006.58014MR1885465DOI10.1023/A:1021735824163
- Francaviglia, M., Palese, M., Vitolo, R., 10.1016/j.difgeo.2004.07.008, Differential Geom. Appl. 22 (1) (2005), 105–120. (2005) Zbl1065.58010MR2106379DOI10.1016/j.difgeo.2004.07.008
- Krupka, D., Some Geometric Aspects of Variational Problems in Fibred Manifolds, Folia Fac. Sci. Natur. UJEP Brunensis, vol. 14, 1973, pp. 1–65. (1973)
- Krupka, D., Variational Sequences on Finite Order Jet Spaces, Proc. Differential Geom. Appl. (Janyška, J., Krupka, D., eds.), World Sci. Singapore, 1990, pp. 236–254. (1990) Zbl0813.58014MR1062026
- Krupka, D., Krupková, O., Prince, G., Sarlet, W., 10.1016/j.difgeo.2007.06.003, Differential Geom. Appl. 25 (5) (2007), 518–542. (2007) MR2351428DOI10.1016/j.difgeo.2007.06.003
- Palese, M., Winterroth, E., 10.1016/S0034-4877(04)80024-7, Rep. Math. Phys. 54 (3) (2004), 349–364. (2004) Zbl1066.58009MR2115744DOI10.1016/S0034-4877(04)80024-7
- Palese, M., Winterroth, E., Global generalized Bianchi identities for invariant variational problems on Gauge-natural bundles, Arch. Math. (Brno) 41 (3) (2005), 289–310. (2005) Zbl1112.58005MR2188385
- Palese, M., Winterroth, E., Variational Lie derivative and cohomology classes, AIP Conf. Proc. 1360 (2011), 106–112. (2011)
- Sardanashvily, G., Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian, arXiv:math-ph/0302012; see also Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting. Reducible gauge theories, J. Phys. A38 (2005), 5329–5344.
- Takens, F., A global version of the inverse problem of the calculus of variations, J. Differential Geom. 14 (1979), 543–562. (1979) Zbl0463.58015MR0600611
- Tulczyjew, W. M., The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419–431. (1977) Zbl0408.58020MR0494272
- Vinogradov, A. M., On the algebro–geometric foundations of Lagrangian field theory, Soviet Math. Dokl. 18 (1977), 1200–1204. (1977) Zbl0403.58005MR0501142
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.