On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions
Joachim Naumann; Jörg Wolf; Michael Wolff
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 237-255
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNaumann, Joachim, Wolf, Jörg, and Wolff, Michael. "On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 237-255. <http://eudml.org/doc/248240>.
@article{Naumann1998,
abstract = {We prove the interior Hölder continuity of weak solutions to parabolic systems \[ \frac\{\partial u^j\}\{\partial t\}-D\_\alpha a\_j^\alpha (x,t,u,\nabla u)=0 \text\{ in \} Q \quad (j=1,\ldots ,N) \]
($Q=\Omega \times (0,T),\Omega \subset \mathbb \{R\}^2$), where the coefficients $a_j^\alpha (x,t,u,\xi )$ are measurable in $x$, Hölder continuous in $t$ and Lipschitz continuous in $u$ and $\xi $.},
author = {Naumann, Joachim, Wolf, Jörg, Wolff, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear parabolic systems; Hölder continuity; Fourier transform; interior Hölder continuity; Fourier transform},
language = {eng},
number = {2},
pages = {237-255},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions},
url = {http://eudml.org/doc/248240},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Naumann, Joachim
AU - Wolf, Jörg
AU - Wolff, Michael
TI - On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 237
EP - 255
AB - We prove the interior Hölder continuity of weak solutions to parabolic systems \[ \frac{\partial u^j}{\partial t}-D_\alpha a_j^\alpha (x,t,u,\nabla u)=0 \text{ in } Q \quad (j=1,\ldots ,N) \]
($Q=\Omega \times (0,T),\Omega \subset \mathbb {R}^2$), where the coefficients $a_j^\alpha (x,t,u,\xi )$ are measurable in $x$, Hölder continuous in $t$ and Lipschitz continuous in $u$ and $\xi $.
LA - eng
KW - nonlinear parabolic systems; Hölder continuity; Fourier transform; interior Hölder continuity; Fourier transform
UR - http://eudml.org/doc/248240
ER -
References
top- Brezis H., Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam: Elsevier, New York, 1973. MR0348562
- Campanato S., Equazioni paraboliche del ordine e spazi , Ann. Mat. Pura Appl. (4) 73 (1966), 55-102. (1966) MR0213737
- Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984), 83-122. (1984) Zbl0704.35024MR0772253
- Da Prato G., Spazi e loro proprietà, Ann. Mat. Pura Appl. (4) 69 (1965), 383-392. (1965) Zbl0145.16207MR0192330
- Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, New Jersey, 1983. Zbl0516.49003MR0717034
- John O., Stará J., On the regularity of weak solutions to parabolic systems in two dimensions, to appear.
- Kalita E., On the Hölder continuity of solutions of nonlinear parabolic systems, Comment. Math. Univ. Carolinae 35 (1994), 675-680. (1994) Zbl0814.35011MR1321237
- Koshelev A., Regularity of solutions for some quasilinear parabolic systems, Math. Nachr. 162 (1993), 59-88. (1993) Zbl0811.35064MR1239576
- Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and quasilinear equations of parabolic type, Transl. Math. Monographs 28, Amer. Math. Soc., Providence, R.I., 1968. MR0241822
- Naumann J., Wolf J., Interior differentiability of weak solutions to parabolic systems with quadratic growth nonlinearities, to appear. Zbl0894.35050MR1066428
- Nečas J., Šverák V., On regularity of nonlinear parabolic systems, Ann. Scuola Norm. Sup. Pisa (4) 18 (1991), 1-11. (1991) MR1118218
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.