On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions

Joachim Naumann; Jörg Wolf; Michael Wolff

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 2, page 237-255
  • ISSN: 0010-2628

Abstract

top
We prove the interior Hölder continuity of weak solutions to parabolic systems u j t - D α a j α ( x , t , u , u ) = 0 in Q ( j = 1 , ... , N ) ( Q = Ω × ( 0 , T ) , Ω 2 ), where the coefficients a j α ( x , t , u , ξ ) are measurable in x , Hölder continuous in t and Lipschitz continuous in u and ξ .

How to cite

top

Naumann, Joachim, Wolf, Jörg, and Wolff, Michael. "On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 237-255. <http://eudml.org/doc/248240>.

@article{Naumann1998,
abstract = {We prove the interior Hölder continuity of weak solutions to parabolic systems \[ \frac\{\partial u^j\}\{\partial t\}-D\_\alpha a\_j^\alpha (x,t,u,\nabla u)=0 \text\{ in \} Q \quad (j=1,\ldots ,N) \] ($Q=\Omega \times (0,T),\Omega \subset \mathbb \{R\}^2$), where the coefficients $a_j^\alpha (x,t,u,\xi )$ are measurable in $x$, Hölder continuous in $t$ and Lipschitz continuous in $u$ and $\xi $.},
author = {Naumann, Joachim, Wolf, Jörg, Wolff, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear parabolic systems; Hölder continuity; Fourier transform; interior Hölder continuity; Fourier transform},
language = {eng},
number = {2},
pages = {237-255},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions},
url = {http://eudml.org/doc/248240},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Naumann, Joachim
AU - Wolf, Jörg
AU - Wolff, Michael
TI - On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 237
EP - 255
AB - We prove the interior Hölder continuity of weak solutions to parabolic systems \[ \frac{\partial u^j}{\partial t}-D_\alpha a_j^\alpha (x,t,u,\nabla u)=0 \text{ in } Q \quad (j=1,\ldots ,N) \] ($Q=\Omega \times (0,T),\Omega \subset \mathbb {R}^2$), where the coefficients $a_j^\alpha (x,t,u,\xi )$ are measurable in $x$, Hölder continuous in $t$ and Lipschitz continuous in $u$ and $\xi $.
LA - eng
KW - nonlinear parabolic systems; Hölder continuity; Fourier transform; interior Hölder continuity; Fourier transform
UR - http://eudml.org/doc/248240
ER -

References

top
  1. Brezis H., Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam: Elsevier, New York, 1973. MR0348562
  2. Campanato S., Equazioni paraboliche del 2 0 ordine e spazi ( 2 , θ ) ( Ø m e g a , δ ) , Ann. Mat. Pura Appl. (4) 73 (1966), 55-102. (1966) MR0213737
  3. Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984), 83-122. (1984) Zbl0704.35024MR0772253
  4. Da Prato G., Spazi ( p , θ ) ( Ø m e g a , δ ) e loro proprietà, Ann. Mat. Pura Appl. (4) 69 (1965), 383-392. (1965) Zbl0145.16207MR0192330
  5. Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, New Jersey, 1983. Zbl0516.49003MR0717034
  6. John O., Stará J., On the regularity of weak solutions to parabolic systems in two dimensions, to appear. 
  7. Kalita E., On the Hölder continuity of solutions of nonlinear parabolic systems, Comment. Math. Univ. Carolinae 35 (1994), 675-680. (1994) Zbl0814.35011MR1321237
  8. Koshelev A., Regularity of solutions for some quasilinear parabolic systems, Math. Nachr. 162 (1993), 59-88. (1993) Zbl0811.35064MR1239576
  9. Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and quasilinear equations of parabolic type, Transl. Math. Monographs 28, Amer. Math. Soc., Providence, R.I., 1968. MR0241822
  10. Naumann J., Wolf J., Interior differentiability of weak solutions to parabolic systems with quadratic growth nonlinearities, to appear. Zbl0894.35050MR1066428
  11. Nečas J., Šverák V., On regularity of nonlinear parabolic systems, Ann. Scuola Norm. Sup. Pisa (4) 18 (1991), 1-11. (1991) MR1118218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.