Linear extensions of relations between vector spaces
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 2, page 367-385
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSzáz, Árpád. "Linear extensions of relations between vector spaces." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 367-385. <http://eudml.org/doc/249167>.
@article{Száz2003,
abstract = {Let $X$ and $Y$ be vector spaces over the same field $K$. Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation $F$ of $X$ into $Y$ is called linear if $\lambda F(x)\subset F(\lambda x)$ and $F(x)+F(y)\subset F(x+y)$ for all $\lambda \in K\setminus \lbrace 0\rbrace $ and $x,y\in X$. After improving and supplementing some former results on linear relations, we show that a relation $\Phi $ of a linearly independent subset $E$ of $X$ into $Y$ can be extended to a linear relation $F$ of $X$ into $Y$ if and only if there exists a linear subspace $Z$ of $Y$ such that $\Phi (e)\in Y|Z$ for all $e\in E$. Moreover, if $E$ generates $X$, then this extension is unique. Furthermore, we also prove that if $F$ is a linear relation of $X$ into $Y$ and $Z$ is a linear subspace of $X$, then each linear selection relation $\Psi $ of $F|Z$ can be extended to a linear selection relation $\Phi $ of $F$. A particular case of this Hahn-Banach type theorem yields an easy proof of the existence of a linear selection function $f$ of $F$ such that $f\circ F^\{ -1\}$ is also a function.},
author = {Száz, Árpád},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector spaces; linear and affine subspaces; linear relations; linear and affine subspaces; linear relations},
language = {eng},
number = {2},
pages = {367-385},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear extensions of relations between vector spaces},
url = {http://eudml.org/doc/249167},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Száz, Árpád
TI - Linear extensions of relations between vector spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 367
EP - 385
AB - Let $X$ and $Y$ be vector spaces over the same field $K$. Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation $F$ of $X$ into $Y$ is called linear if $\lambda F(x)\subset F(\lambda x)$ and $F(x)+F(y)\subset F(x+y)$ for all $\lambda \in K\setminus \lbrace 0\rbrace $ and $x,y\in X$. After improving and supplementing some former results on linear relations, we show that a relation $\Phi $ of a linearly independent subset $E$ of $X$ into $Y$ can be extended to a linear relation $F$ of $X$ into $Y$ if and only if there exists a linear subspace $Z$ of $Y$ such that $\Phi (e)\in Y|Z$ for all $e\in E$. Moreover, if $E$ generates $X$, then this extension is unique. Furthermore, we also prove that if $F$ is a linear relation of $X$ into $Y$ and $Z$ is a linear subspace of $X$, then each linear selection relation $\Psi $ of $F|Z$ can be extended to a linear selection relation $\Phi $ of $F$. A particular case of this Hahn-Banach type theorem yields an easy proof of the existence of a linear selection function $f$ of $F$ such that $f\circ F^{ -1}$ is also a function.
LA - eng
KW - vector spaces; linear and affine subspaces; linear relations; linear and affine subspaces; linear relations
UR - http://eudml.org/doc/249167
ER -
References
top- Adasch N., Der Satz über offene lineare Relationen in topologischen Vektorräumen, Note Mat. 11 (1991), 1-5. (1991) MR1258535
- Arens R., 10.2140/pjm.1961.11.9, Pacific J. Math. 11 (1961), 9-23. (1961) Zbl0102.10201MR0123188DOI10.2140/pjm.1961.11.9
- Berge C., Topological Spaces Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity, Oliver and Boyd London (1963). (1963) Zbl0114.38602MR1464690
- Cross R., Multivalued Linear Operators, Marcel Dekker New York (1998). (1998) Zbl0911.47002MR1631548
- Dacić R., On multi-valued functions, Publ. Inst. Math. (Beograd) (N.S.) 9 (1969), 5-7. (1969) MR0257991
- Findlay G.D., 10.4153/CMB-1960-015-x, Canad. Math. Bull. 3 (1960), 131-132. (1960) Zbl0100.28002MR0124251DOI10.4153/CMB-1960-015-x
- Godini G., Set-valued Cauchy functional equation, Rev. Roumaine Math. Pures Appl. 20 (1975), 1113-1121. (1975) Zbl0322.39013MR0393920
- Holá L'., Some properties of almost continuous linear relations, Acta Math. Univ. Comenian. 50-51 (1987), 61-69. (1987) MR0989404
- Holá L'., Kupka I., Closed graph and open mapping theorems for linear relations, Acta Math. Univ. Comenian. 46-47 (1985), 157-162. (1985) MR0872338
- Holá L'., Maličký P., Continuous linear selectors of linear relations, Acta Math. Univ. Comenian. 48-49 (1986), 153-157. (1986) MR0885328
- Kelley J.L., Namioka I., Linear Topological Spaces, D. Van Nostrand New York (1963). (1963) Zbl0115.09902MR0166578
- Nikodem K., K-convex and K-concave set-valued functions, Zeszty Nauk. Politech. Lódz. Mat. 559 (1989), 1-75. (1989)
- Robinson S.M., 10.1090/S0002-9947-1972-0313769-9, Trans. Amer. Math. Soc. 174 (1972), 127-140. (1972) MR0313769DOI10.1090/S0002-9947-1972-0313769-9
- Smajdor W., Subadditive and subquadratic set-valued functions, Prace Nauk. Univ. Ślask. Katowic. 889 (1987), 1-73. (1987) Zbl0626.54019MR0883802
- Száz Á., Pointwise limits of nets of multilinear maps, Acta Sci. Math. (Szeged) 55 (1991), 103-117. (1991) MR1124949
- Száz Á., 10.4064/ap-69-3-235-249, Ann. Polon. Math. 69 (1998), 235-249. (1998) MR1665007DOI10.4064/ap-69-3-235-249
- Száz Á., An extension of Kelley's closed relation theorem to relator spaces, Filomat (Nis) 14 (2000), 49-71. (2000) Zbl1012.54026MR1953994
- Száz Á., Preseminorm generating relations and their Minkowski functionals, Publ. Elektrotehn. Fak. Univ. Beograd, Ser. Mat. 12 (2001), 16-34. (2001) Zbl1060.46004MR1920353
- Száz Á., Translation relations, the building blocks of compatible relators, Math. Montisnigri, to appear. MR2023739
- Száz Á., Száz G., Additive relations, Publ. Math. Debrecen 20 (1973), 259-272. (1973) MR0340878
- Száz Á., Száz G., Linear relations, Publ. Math. Debrecen 27 (1980), 219-227. (1980) MR0603995
- Ursescu C., Multifunctions with convex closed graph, Czechoslovak Math. J. 25 (1975), 438-441. (1975) Zbl0318.46006MR0388032
- Wilhelm M., 10.4064/fm-114-3-219-228, Fund. Math. 114 (1981), 219-228. (1981) MR0644407DOI10.4064/fm-114-3-219-228
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.