On the Cauchy problem for a class of parabolic equations with variable density
Shoshana Kamin; Robert Kersner; Alberto Tesei
- Volume: 9, Issue: 4, page 279-298
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topKamin, Shoshana, Kersner, Robert, and Tesei, Alberto. "On the Cauchy problem for a class of parabolic equations with variable density." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 279-298. <http://eudml.org/doc/252427>.
@article{Kamin1998,
abstract = {The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.},
author = {Kamin, Shoshana, Kersner, Robert, Tesei, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Cauchy problem; Well-posedness; Conditions at infinity; well-posedness; conditions at infinity},
language = {eng},
month = {12},
number = {4},
pages = {279-298},
publisher = {Accademia Nazionale dei Lincei},
title = {On the Cauchy problem for a class of parabolic equations with variable density},
url = {http://eudml.org/doc/252427},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Kamin, Shoshana
AU - Kersner, Robert
AU - Tesei, Alberto
TI - On the Cauchy problem for a class of parabolic equations with variable density
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 279
EP - 298
AB - The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.
LA - eng
KW - Cauchy problem; Well-posedness; Conditions at infinity; well-posedness; conditions at infinity
UR - http://eudml.org/doc/252427
ER -
References
top- Aronson, D. G., Uniqueness of positive weak solutions of second order parabolic equations. Ann. Polon. Math., 16, 1965, 285-303. Zbl0137.29403MR176231
- Aronson, D. G. - Crandall, M. - Peletier, L. A., Stabilization of solutions in a degenerate nonlinear diffusion problem. Nonlin. Anal., 6, 1982, 1001-1022. Zbl0518.35050MR678053DOI10.1016/0362-546X(82)90072-4
- Bertsch, M. - Kersner, R. - Peletier, L. A., Positivity versus localization in degenerate diffusion equations. Nonlin. Anal., 9, 1985, 987-1008. Zbl0596.35073MR804564DOI10.1016/0362-546X(85)90081-1
- Borok, V. M. - Zitomirskii, Ja. I., Cauchy problem for parabolic systems, degenerating at infinity. Zap. Mech. Mat. Fak. Chark. Gos. Univ. im Gorkogo i Cark. Mat. Obzhestva, 29, 1963, 5-15 (in Russian).
- Eidel'man, S. D., Parabolic systems. North-Holland, Amsterdam1969. Zbl0181.37403MR252806
- Eidus, D., The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium. J. Differ. Equations, 84, 1990, 309-318. Zbl0707.35074MR1047572DOI10.1016/0022-0396(90)90081-Y
- Eidus, D., The perturbed Laplace operator in a weighted . J. Funct. Anal., 100, 1991, 400-410. Zbl0762.35020MR1125232DOI10.1016/0022-1236(91)90117-N
- Eidus, D. - Kamin, S., The filtration equation in a class of functions decreasing at infinity. Proc. Amer. Math. Soc., 120, 1994, 825-830. Zbl0791.35065MR1169025DOI10.2307/2160476
- Feller, W., The parabolic differential equations and the associated semi-groups of transformations. Ann. Math., 55, 1952, 468-519. Zbl0047.09303MR47886
- Freidlin, M., Functional integration and partial differential equations. Princeton University Press, Princeton1985. Zbl0568.60057MR833742
- Friedman, A., On the uniqueness of the Cauchy problem for parabolic equations. Amer. J. Math., 81, 1959, 503-511. Zbl0086.30001MR104907
- Hasminsky, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Prob. Appl., 5, 1970, 196-214 (in Russian). Zbl0106.12001MR133871
- Hille, E., Les probabilités continues en chaîne. C.R. Acad. Sci. Paris, 230, 1950, 34-35. Zbl0036.08801MR32119
- Holmgren, E., Sur les solutions quasianalytiques de l’équation de la chaleur. Ark. Mat., 18, 1924, 64-95. JFM50.0337.02
- Il'in, A. M. - Kalashnikov, A. S. - Oleinik, O. A., Linear equations of the second order of parabolic type. Russian Math. Surveys, 17, 1962, 1-144.
- Kamin, S. - Rosenau, P., Non-linear diffusion in a finite mass medium. Comm. Pure Appl. Math., 35, 1982, 113-127. Zbl0469.35060MR637497DOI10.1002/cpa.3160350106
- Kamynin, L. I. - Himtsenko, B., On Tikhonov-Petrowsky problem for second order parabolic equations. Sibirsky Math. J., 22, 1981, 78-109 (in Russian). Zbl0501.35040MR632819
- Lunardi, A., Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in . Studia Math., 128, 1998, 171-198. Zbl0899.35014MR1490820
- Murata, M., Non-uniqueness of the positive Cauchy problem for parabolic equations. J. Differ. Equations, 123, 1995, 343-387. Zbl0843.35036MR1362880DOI10.1006/jdeq.1995.1167
- Petrowsky, I. G., On some problems in the theory of partial differential equations. Usp. Mat. Nauk, 1, 1946, 44-70 (in Russian).
- Pinchover, Y., On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z., 223, 1996, 569-586. Zbl0869.35010MR1421956DOI10.1007/PL00004275
- Pinsky, R. G., Positive harmonic functions and diffusion. Cambridge University Press, Cambridge1995. Zbl0858.31001MR1326606DOI10.1017/CBO9780511526244
- Smirnova, G. N., The Cauchy problem for degenerate at infinity parabolic equations. Math. Sb., 70, 1966, 591-604 (in Russian). Zbl0152.30101MR199563
- Sonin, I. M., On the classes of uniqueness for degenerate parabolic equations. Math. Sb., 85, 1971, 459-473 (in Russian). Zbl0243.35050MR287167
- Täcklind, S., Sur les classes quasianalytiques de solutions des équations aux derivées partielles du type parabolique. Nord. Acta Reg. Soc. Sci. Uppsal., 10, 1936, 3-55. JFM62.1186.01
- Tikhonov, A. N., Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 42, 1935, 199-216. Zbl0012.35501JFM61.1203.05
- Widder, D. V., Positive temperatures on an infinite rod. Trans. Amer. Math. Soc., 55, 1944, 85-95. Zbl0061.22303MR9795
- Zitomirski, Ja. I., Uniqueness classes for solutions of the Cauchy problem. Soviet. Math. Dokl., 8, 1967, 259-262. Zbl0153.41601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.