On the Cauchy problem for a class of parabolic equations with variable density

Shoshana Kamin; Robert Kersner; Alberto Tesei

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 4, page 279-298
  • ISSN: 1120-6330

Abstract

top
The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.

How to cite

top

Kamin, Shoshana, Kersner, Robert, and Tesei, Alberto. "On the Cauchy problem for a class of parabolic equations with variable density." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 279-298. <http://eudml.org/doc/252427>.

@article{Kamin1998,
abstract = {The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.},
author = {Kamin, Shoshana, Kersner, Robert, Tesei, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Cauchy problem; Well-posedness; Conditions at infinity; well-posedness; conditions at infinity},
language = {eng},
month = {12},
number = {4},
pages = {279-298},
publisher = {Accademia Nazionale dei Lincei},
title = {On the Cauchy problem for a class of parabolic equations with variable density},
url = {http://eudml.org/doc/252427},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Kamin, Shoshana
AU - Kersner, Robert
AU - Tesei, Alberto
TI - On the Cauchy problem for a class of parabolic equations with variable density
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 279
EP - 298
AB - The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.
LA - eng
KW - Cauchy problem; Well-posedness; Conditions at infinity; well-posedness; conditions at infinity
UR - http://eudml.org/doc/252427
ER -

References

top
  1. Aronson, D. G., Uniqueness of positive weak solutions of second order parabolic equations. Ann. Polon. Math., 16, 1965, 285-303. Zbl0137.29403MR176231
  2. Aronson, D. G. - Crandall, M. - Peletier, L. A., Stabilization of solutions in a degenerate nonlinear diffusion problem. Nonlin. Anal., 6, 1982, 1001-1022. Zbl0518.35050MR678053DOI10.1016/0362-546X(82)90072-4
  3. Bertsch, M. - Kersner, R. - Peletier, L. A., Positivity versus localization in degenerate diffusion equations. Nonlin. Anal., 9, 1985, 987-1008. Zbl0596.35073MR804564DOI10.1016/0362-546X(85)90081-1
  4. Borok, V. M. - Zitomirskii, Ja. I., Cauchy problem for parabolic systems, degenerating at infinity. Zap. Mech. Mat. Fak. Chark. Gos. Univ. im Gorkogo i Cark. Mat. Obzhestva, 29, 1963, 5-15 (in Russian). 
  5. Eidel'man, S. D., Parabolic systems. North-Holland, Amsterdam1969. Zbl0181.37403MR252806
  6. Eidus, D., The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium. J. Differ. Equations, 84, 1990, 309-318. Zbl0707.35074MR1047572DOI10.1016/0022-0396(90)90081-Y
  7. Eidus, D., The perturbed Laplace operator in a weighted L 2 . J. Funct. Anal., 100, 1991, 400-410. Zbl0762.35020MR1125232DOI10.1016/0022-1236(91)90117-N
  8. Eidus, D. - Kamin, S., The filtration equation in a class of functions decreasing at infinity. Proc. Amer. Math. Soc., 120, 1994, 825-830. Zbl0791.35065MR1169025DOI10.2307/2160476
  9. Feller, W., The parabolic differential equations and the associated semi-groups of transformations. Ann. Math., 55, 1952, 468-519. Zbl0047.09303MR47886
  10. Freidlin, M., Functional integration and partial differential equations. Princeton University Press, Princeton1985. Zbl0568.60057MR833742
  11. Friedman, A., On the uniqueness of the Cauchy problem for parabolic equations. Amer. J. Math., 81, 1959, 503-511. Zbl0086.30001MR104907
  12. Hasminsky, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Prob. Appl., 5, 1970, 196-214 (in Russian). Zbl0106.12001MR133871
  13. Hille, E., Les probabilités continues en chaîne. C.R. Acad. Sci. Paris, 230, 1950, 34-35. Zbl0036.08801MR32119
  14. Holmgren, E., Sur les solutions quasianalytiques de l’équation de la chaleur. Ark. Mat., 18, 1924, 64-95. JFM50.0337.02
  15. Il'in, A. M. - Kalashnikov, A. S. - Oleinik, O. A., Linear equations of the second order of parabolic type. Russian Math. Surveys, 17, 1962, 1-144. 
  16. Kamin, S. - Rosenau, P., Non-linear diffusion in a finite mass medium. Comm. Pure Appl. Math., 35, 1982, 113-127. Zbl0469.35060MR637497DOI10.1002/cpa.3160350106
  17. Kamynin, L. I. - Himtsenko, B., On Tikhonov-Petrowsky problem for second order parabolic equations. Sibirsky Math. J., 22, 1981, 78-109 (in Russian). Zbl0501.35040MR632819
  18. Lunardi, A., Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in R n . Studia Math., 128, 1998, 171-198. Zbl0899.35014MR1490820
  19. Murata, M., Non-uniqueness of the positive Cauchy problem for parabolic equations. J. Differ. Equations, 123, 1995, 343-387. Zbl0843.35036MR1362880DOI10.1006/jdeq.1995.1167
  20. Petrowsky, I. G., On some problems in the theory of partial differential equations. Usp. Mat. Nauk, 1, 1946, 44-70 (in Russian). 
  21. Pinchover, Y., On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z., 223, 1996, 569-586. Zbl0869.35010MR1421956DOI10.1007/PL00004275
  22. Pinsky, R. G., Positive harmonic functions and diffusion. Cambridge University Press, Cambridge1995. Zbl0858.31001MR1326606DOI10.1017/CBO9780511526244
  23. Smirnova, G. N., The Cauchy problem for degenerate at infinity parabolic equations. Math. Sb., 70, 1966, 591-604 (in Russian). Zbl0152.30101MR199563
  24. Sonin, I. M., On the classes of uniqueness for degenerate parabolic equations. Math. Sb., 85, 1971, 459-473 (in Russian). Zbl0243.35050MR287167
  25. Täcklind, S., Sur les classes quasianalytiques de solutions des équations aux derivées partielles du type parabolique. Nord. Acta Reg. Soc. Sci. Uppsal., 10, 1936, 3-55. JFM62.1186.01
  26. Tikhonov, A. N., Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 42, 1935, 199-216. Zbl0012.35501JFM61.1203.05
  27. Widder, D. V., Positive temperatures on an infinite rod. Trans. Amer. Math. Soc., 55, 1944, 85-95. Zbl0061.22303MR9795
  28. Zitomirski, Ja. I., Uniqueness classes for solutions of the Cauchy problem. Soviet. Math. Dokl., 8, 1967, 259-262. Zbl0153.41601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.