The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

On character of points in the Higson corona of a metric space

Taras O. Banakh; Ostap Chervak; Lubomyr Zdomskyy

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 159-178
  • ISSN: 0010-2628

Abstract

top
We prove that for an unbounded metric space X , the minimal character 𝗆 χ ( X ˇ ) of a point of the Higson corona X ˇ of X is equal to 𝔲 if X has asymptotically isolated balls and to max { 𝔲 , 𝔡 } otherwise. This implies that under 𝔲 < 𝔡 a metric space X of bounded geometry is coarsely equivalent to the Cantor macro-cube 2 < if and only if dim ( X ˇ ) = 0 and 𝗆 χ ( X ˇ ) = 𝔡 . This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.

How to cite

top

Banakh, Taras O., Chervak, Ostap, and Zdomskyy, Lubomyr. "On character of points in the Higson corona of a metric space." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 159-178. <http://eudml.org/doc/252456>.

@article{Banakh2013,
abstract = {We prove that for an unbounded metric space $X$, the minimal character $\mathsf \{m\}\chi (\check\{X\})$ of a point of the Higson corona $\check\{X\}$ of $X$ is equal to $\mathfrak \{u\}$ if $X$ has asymptotically isolated balls and to $\max \lbrace \mathfrak \{u\},\mathfrak \{d\}\rbrace $ otherwise. This implies that under $\mathfrak \{u\} < \mathfrak \{d\}$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^\{<\mathbb \{N\}\}$ if and only if $\dim (\check\{X\})=0$ and $\mathsf \{m\}\chi (\check\{X\})= \mathfrak \{d\}$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.},
author = {Banakh, Taras O., Chervak, Ostap, Zdomskyy, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Higson corona; character of a point; ultrafilter number; dominating number; Higson corona; character of a point; ultrafilter number; dominating number},
language = {eng},
number = {2},
pages = {159-178},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On character of points in the Higson corona of a metric space},
url = {http://eudml.org/doc/252456},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Chervak, Ostap
AU - Zdomskyy, Lubomyr
TI - On character of points in the Higson corona of a metric space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 159
EP - 178
AB - We prove that for an unbounded metric space $X$, the minimal character $\mathsf {m}\chi (\check{X})$ of a point of the Higson corona $\check{X}$ of $X$ is equal to $\mathfrak {u}$ if $X$ has asymptotically isolated balls and to $\max \lbrace \mathfrak {u},\mathfrak {d}\rbrace $ otherwise. This implies that under $\mathfrak {u} < \mathfrak {d}$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb {N}}$ if and only if $\dim (\check{X})=0$ and $\mathsf {m}\chi (\check{X})= \mathfrak {d}$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.
LA - eng
KW - Higson corona; character of a point; ultrafilter number; dominating number; Higson corona; character of a point; ultrafilter number; dominating number
UR - http://eudml.org/doc/252456
ER -

References

top
  1. Banakh T., Zarichnyi I., 10.4171/GGD/145, Groups Geom. Dyn. 5 (2011), no. 4, 691–728. Zbl1246.54023MR2836457DOI10.4171/GGD/145
  2. Banakh T., Zarichnyi I., A coarse characterization of the Baire macro-space, Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118). 
  3. Banakh T., Zdomskyy L., The coherence of semifilters: a survey. Selection principles and covering properties in topology, 53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR2395751
  4. Banakh T., Zdomskyy L., Coherence of Semifilters, book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html. Zbl1162.03026
  5. Bell G., Dranishnikov A., Asymptotic dimension, Topology Appl. 155 (2008), no. 12, 1265–1296. MR2423966
  6. Blass A., 10.1305/ndjfl/1093636772, Notre Dame J. Formal Logic 27 (1986), 579–591. Zbl0622.03040MR0867002DOI10.1305/ndjfl/1093636772
  7. Blass A., 10.1007/978-1-4020-5764-9_7, in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. MR2768685DOI10.1007/978-1-4020-5764-9_7
  8. Canjar M., 10.1305/ndjfl/1093635237, Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. Zbl0694.03029MR1036675DOI10.1305/ndjfl/1093635237
  9. van Douwen E., The integers and topology, in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. Zbl0561.54004MR0776622
  10. Dranishnikov A., Asymptotic topology, Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. Zbl1028.54032MR1840358
  11. Dranishnikov A.N., Keesling J., Uspenskij V.V., 10.1016/S0040-9383(97)00048-7, Topology 37 (1998), no. 4, 791–803. Zbl0910.54026MR1607744DOI10.1016/S0040-9383(97)00048-7
  12. Dranishnikov A., Zarichnyi M., Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), no. 2–3, 203–225. Zbl1063.54027MR2074917
  13. Fremlin D., Consequences of Martin's Axiom, Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl1156.03050
  14. Kechris A., Classical Descriptive Set Theory, Springer, New York, 1995. Zbl0819.04002MR1321597
  15. Laflamme C., Zhu J.-P., 10.2307/2586852, J. Symbolic Logic 63 (1998), 584–592. Zbl0911.04001MR1627310DOI10.2307/2586852
  16. Protasov I.V., Normal ball structures, Mat. Stud. 20 (2003), 3–16. Zbl1053.54503MR2019592
  17. Protasov I.V., 10.1016/j.topol.2004.09.005, Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl1068.54036MR2130861DOI10.1016/j.topol.2004.09.005
  18. Protasov I.V., Coronas of ultrametric spaces, Comment. Math. Univ. Carolin. 52 (2011), 303–307. Zbl1240.54087MR2849052
  19. Roe J., Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003. Zbl1042.53027MR2007488
  20. Vaughan J., Small uncountable cardinals and topology, in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR1078647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.