Continuous transformation groups on spaces

K. Spallek

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 301-320
  • ISSN: 0066-2216

Abstract

top
A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies some mild geometric property) is in fact a Lie group and operates differentiably on X. Special cases have already been known: X a manifold (Montgomery-Zippin), X a reduced (Kerner) or nonreduced (W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable spaces. There one has for example in general no finitely generated ideals as in the case of complex spaces. As a corollary one obtains: The reduction of a locally compact differentiable group is a Lie group (by different methods also proved by Pasternak-Winiarski). It was already proved before that any differentiable group can be uniquely extended to a smallest locally compact differentiable group (as a dense subgroup). The study of the nonreduced parts of differentiable groups remains to be completed.

How to cite

top

K. Spallek. "Continuous transformation groups on spaces." Annales Polonici Mathematici 55.1 (1991): 301-320. <http://eudml.org/doc/262429>.

@article{K1991,
abstract = {A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies some mild geometric property) is in fact a Lie group and operates differentiably on X. Special cases have already been known: X a manifold (Montgomery-Zippin), X a reduced (Kerner) or nonreduced (W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable spaces. There one has for example in general no finitely generated ideals as in the case of complex spaces. As a corollary one obtains: The reduction of a locally compact differentiable group is a Lie group (by different methods also proved by Pasternak-Winiarski). It was already proved before that any differentiable group can be uniquely extended to a smallest locally compact differentiable group (as a dense subgroup). The study of the nonreduced parts of differentiable groups remains to be completed.},
author = {K. Spallek},
journal = {Annales Polonici Mathematici},
keywords = {differentiable spaces; differentiable groups; Lie groups; transformation groups; formal groups; differentiable space; real Lie group},
language = {eng},
number = {1},
pages = {301-320},
title = {Continuous transformation groups on spaces},
url = {http://eudml.org/doc/262429},
volume = {55},
year = {1991},
}

TY - JOUR
AU - K. Spallek
TI - Continuous transformation groups on spaces
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 301
EP - 320
AB - A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies some mild geometric property) is in fact a Lie group and operates differentiably on X. Special cases have already been known: X a manifold (Montgomery-Zippin), X a reduced (Kerner) or nonreduced (W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable spaces. There one has for example in general no finitely generated ideals as in the case of complex spaces. As a corollary one obtains: The reduction of a locally compact differentiable group is a Lie group (by different methods also proved by Pasternak-Winiarski). It was already proved before that any differentiable group can be uniquely extended to a smallest locally compact differentiable group (as a dense subgroup). The study of the nonreduced parts of differentiable groups remains to be completed.
LA - eng
KW - differentiable spaces; differentiable groups; Lie groups; transformation groups; formal groups; differentiable space; real Lie group
UR - http://eudml.org/doc/262429
ER -

References

top
  1. [1] N. Aronszajn, Subcartesian and subriemannian spaces. Notices Amer. Math. Soc. 14, (1967), 111. 
  2. [2] N. Aronszajn and P. Szeptycki, Subcartesian spaces, J. Differential Geom. 15 (1980), 393-416. 
  3. [3] H. Behnke, K. Spallek et al., Zur lokalen Theorie in der Funktionentheorie mehrerer komplexer Veränderlicher; in particular K. Spallek, Differenzierbare Räume, in: Forschungsergebnisse aus dem 1. Math. Inst. der Univ. Münster, Westdeutscher Verlag, Köln und Opladen 1966. 
  4. [4] R. Bekemeier, Holmann-Blätterungen im differenzierbaren Fall (auf differenzierbaren Räumen), Diplomarbeit, Universität Bochum, 1988. 
  5. [5] A. Breuer and C. D. Marshall, Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120. Zbl0366.58001
  6. [6] D. Gottowik, Zweiter Tangentialraum und kovariante Ableitungen auf differenzierbaren Räumen, Diplomarbeit, Universität Bochum, 1987. 
  7. [7] H. Grauert, Ein Theorem der analytischen Garbentheorie, Publ. Math. 5 (1960), 232-292. Zbl0100.08001
  8. [8] T. Husain, Introduction to Topological Groups, Saunders 1966. Zbl0136.29402
  9. [9] M. Jurchescu, Espaces mixtes, in: Lecture Notes in Math. 1014, Springer, 1983, 37-57. 
  10. [10] W. Kaup, Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann. 160 (1965), 72-92. Zbl0146.31102
  11. [11] H. Kerner, Über die Automorphismengruppe komplexer Räume, Arch. Math. (Basel) 11 (1960), 282-288. Zbl0112.31205
  12. [12] N. Kiesow, Einbettung von Räumen in Mannigfaltigkeiten minimaler Dimension, Dissertation, Universität Bochum, 1979. 
  13. [13] A. Kowalczyk, Whitney's and Nash's embedding theorems for differential spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 28 (1980), 385-390. Zbl0494.58005
  14. [14] F. Leymann, Blätterungen von Räumen mit Singularitäten, Dissertation, Universität Bochum, 1987. Zbl0553.57010
  15. [15] C. D. Marshall, Calculus on subcartesian spaces, J. Differential Geom. 10 (1980), 551-573. Zbl0317.58007
  16. [16] H. Meier, Anwendungen der Theorie der lokal integrablen Vektorfelder auf Räumen mit Singularitäten, Dissertation, Universität Bochum, 1986. 
  17. [17] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publ., 1966. Zbl0068.01904
  18. [18] D. Motreanu, Embeddings of C -subcartesian spaces, An. Ştiinţ. Univ. ’Al. I. Cuza’ Iaşi 25 (1979), 65-70. 
  19. [19] Z. Pasternak-Winiarski, Group differential structures and their fundamental properties, thesis, Inst. Math., Techn. Univ. Warsaw, 1981 (in Polish). 
  20. [20] Z. Pasternak-Winiarski, Differential groups of class D₀, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Technik 2N (1984), 173-176. Zbl0563.58005
  21. [21] Z. Pasternak-Winiarski, Differential groups of class D₀ and standard charts, Demonstratio Math. 16 (2) (1983), 503-517. Zbl0524.58005
  22. [22] K. Reichard, Quotienten differenzierbarer Räume nach eigentlich diskontinuierlichen Gruppen, Math. Z. (1976), 281-283. Zbl0338.32020
  23. [23] K. Reichard, Quotienten analytischer und differenzierbarer Räume nach Transformationsgruppen, Habilitation, Universität Bochum, 1978. 
  24. [24] K. Reichard and K. Spallek, Productsingularities and quotients, in: Holomorphic Dynamics, Proc. Mexico, Lecture Notes in Math. 1345, Springer, 1986, 256-270. 
  25. [25] U. Schneider-Dunio, Stabilität transversal differenzierbarer Relationensysteme auf allgemeinen Räumen, Diplomarbeit, Universität Bochum, 1988. 
  26. [26] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272. Zbl0162.25101
  27. [27] R. Sikorski, Differential modules, ibid. 24 (1971), 45-79. Zbl0226.53004
  28. [28] K. Spallek, Differenzierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143-162. 
  29. [29] K. Spallek, Differenzierbare Räume, ibid. 180 (1969), 269-296. 
  30. [30] K. Spallek, Glättung differenzierbarer Räume, ibid. 186 (1970), 233-248. Zbl0184.25001
  31. [31] K. Spallek, Differential forms on differentiable spaces, I, II, Rend. Mat. (2) 4 (1971), 231-258, and 5 (1972), 375-389. 
  32. [32] K. Spallek, Beispiele zur lokalen Theorie der differenzierbaren Räume, Math. Ann. 195 (1972), 332-347. Zbl0217.49501
  33. [33] K. Spallek, Zur Klassifikation differenzierbarer Gruppen, Manuscripta Math. 11 (1974), 345-357. Zbl0301.22015
  34. [34] K. Spallek, Geometrische Bedingungen für die Integrabilität von Vektorfeldern auf Teilmengen des n , ibid. 25 (1978), 147-160. Zbl0391.32004
  35. [35] K. Spallek, Foliations on singularities, in: Complex Analysis and Applications, Proc. Varna 1985, Bulgar. Acad. Sci., Sofia 1986, 643-657. 
  36. [36] K. Spallek, Differentiable groups and Whitney spaces, Serdica 16 (1990), 166-175. Zbl0717.58004
  37. [37] K. Spallek, Fortsetzung von Blätterungen und Integration beliebiger Verteilungen, in: Complex Analysis, Seventh Romannian-Finnish Seminar, Bucarest 1989, Rev. Roumaine Math. Pures Appl. (1991/92), to appear. 
  38. [38] P. Szeptycki, Vector bundles on subcartesian spaces, Ann. Polon. Math. 42 (1983), 350-368. Zbl0531.58007
  39. [39] P. Szeptycki, Subcartesian spaces, preprint, 1980. 
  40. [40] M. Teufel, Differenzierbare Strukturen und Jetbündel auf Räumen mit Singularitäten, Dissertation, Universität Bochum, 1979. 
  41. [41] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. 
  42. [42] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl0008.24902
  43. [43] H. Whitney, On ideals of differentiable functions, Amer. J. Math. 70 (1948), 635-658. Zbl0037.35502
  44. [44] W. Sasin and K. Spallek, Gluing of differentiable spaces and applications, Math. Ann. (1991), to appear. Zbl0735.32020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.