top
CONTENTSIntroduction............................................................................................................ 51. The category of -systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for -systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41
Uri Fixman, and Frank A. Zorzitto. Direct summands of systems of continuous linear transformations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1979. <http://eudml.org/doc/268561>.
@book{UriFixman1979, abstract = {CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41}, author = {Uri Fixman, Frank A. Zorzitto}, keywords = {systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Direct summands of systems of continuous linear transformations}, url = {http://eudml.org/doc/268561}, year = {1979}, }
TY - BOOK AU - Uri Fixman AU - Frank A. Zorzitto TI - Direct summands of systems of continuous linear transformations PY - 1979 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41 LA - eng KW - systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence UR - http://eudml.org/doc/268561 ER -