Direct summands of systems of continuous linear transformations

Uri Fixman; Frank A. Zorzitto

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1979

Abstract

top
CONTENTSIntroduction............................................................................................................ 51. The category of C N -systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for C 2 -systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41

How to cite

top

Uri Fixman, and Frank A. Zorzitto. Direct summands of systems of continuous linear transformations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1979. <http://eudml.org/doc/268561>.

@book{UriFixman1979,
abstract = {CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41},
author = {Uri Fixman, Frank A. Zorzitto},
keywords = {systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Direct summands of systems of continuous linear transformations},
url = {http://eudml.org/doc/268561},
year = {1979},
}

TY - BOOK
AU - Uri Fixman
AU - Frank A. Zorzitto
TI - Direct summands of systems of continuous linear transformations
PY - 1979
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41
LA - eng
KW - systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence
UR - http://eudml.org/doc/268561
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.