Direct summands of systems of continuous linear transformations

Uri Fixman; Frank A. Zorzitto

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1979

Abstract

top
CONTENTSIntroduction............................................................................................................ 51. The category of C N -systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for C 2 -systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41

How to cite

top

Uri Fixman, and Frank A. Zorzitto. Direct summands of systems of continuous linear transformations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1979. <http://eudml.org/doc/268561>.

@book{UriFixman1979,
abstract = {CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41},
author = {Uri Fixman, Frank A. Zorzitto},
keywords = {systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Direct summands of systems of continuous linear transformations},
url = {http://eudml.org/doc/268561},
year = {1979},
}

TY - BOOK
AU - Uri Fixman
AU - Frank A. Zorzitto
TI - Direct summands of systems of continuous linear transformations
PY - 1979
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 51. The category of $C^N$-systems........................................................................... 82. The problem of split monomorphisms................................................................ 103. Internal hom and tensor product........................................................................... 134. Characterizations of split monomorphisms....................................................... 195. Reduction to algebraic systems............................................................................ 246. Reduction to finite-dimensional indecomposable sources............................ 277. The broken chain condition for $C^2$-systems................................................. 328. An example for computation of Nli((X, Y), (V, W))................................................ 36References.................................................................................................................... 41
LA - eng
KW - systems of continuous linear transformations; topological direct summands; split monomorphisms; chain condition; chain sequence
UR - http://eudml.org/doc/268561
ER -

NotesEmbed ?

top

You must be logged in to post comments.