Combinatorial bases of modules for affine Lie algebra B 2(1)

Mirko Primc

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 197-225
  • ISSN: 2391-5455

Abstract

top
We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.

How to cite

top

Mirko Primc. "Combinatorial bases of modules for affine Lie algebra B 2(1)." Open Mathematics 11.2 (2013): 197-225. <http://eudml.org/doc/268992>.

@article{MirkoPrimc2013,
abstract = {We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.},
author = {Mirko Primc},
journal = {Open Mathematics},
keywords = {Affine Lie algebras; Vertex operator algebras; Combinatorial bases; affine Lie algebras; vertex operator algebras; intertwining operators; combinatorial bases},
language = {eng},
number = {2},
pages = {197-225},
title = {Combinatorial bases of modules for affine Lie algebra B 2(1)},
url = {http://eudml.org/doc/268992},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Mirko Primc
TI - Combinatorial bases of modules for affine Lie algebra B 2(1)
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 197
EP - 225
AB - We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.
LA - eng
KW - Affine Lie algebras; Vertex operator algebras; Combinatorial bases; affine Lie algebras; vertex operator algebras; intertwining operators; combinatorial bases
UR - http://eudml.org/doc/268992
ER -

References

top
  1. [1] Ardonne E., Kedem R., Stone M., Fermionic characters and arbitrary highest-weight integrable 𝔰 𝔩 ^ r + 1 -modules, Comm. Math. Phys., 2006, 264(2), 427–464 http://dx.doi.org/10.1007/s00220-005-1486-3 Zbl1233.17017
  2. [2] Baranović I., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for D 4(1), Comm. Algebra, 2011, 39(3), 1007–1051 http://dx.doi.org/10.1080/00927871003639329 Zbl1269.17011
  3. [3] Calinescu C., Principal subspaces of higher-level standard 𝔰 𝔩 ( 3 ) ^ -modules, J. Pure Appl. Algebra, 2007, 210(2), 559–575 http://dx.doi.org/10.1016/j.jpaa.2006.10.018 
  4. [4] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A,D,E, J. Algebra, 2010, 323(1), 167–192 http://dx.doi.org/10.1016/j.jalgebra.2009.09.029 Zbl1221.17032
  5. [5] Capparelli S., Lepowsky J., Milas A., The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math., 2003, 5(6), 947–966 http://dx.doi.org/10.1142/S0219199703001191 Zbl1039.05005
  6. [6] Capparelli S., Lepowsky J., Milas A., The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J., 2006, 12(3), 379–397 http://dx.doi.org/10.1007/s11139-006-0150-7 Zbl1166.17009
  7. [7] Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progr. Math., 112, Birkhäuser, Boston, 1993 http://dx.doi.org/10.1007/978-1-4612-0353-7 Zbl0803.17009
  8. [8] Dong C., Li H., Mason G., Simple currents and extensions of vertex operator algebras, Comm. Math. Phys., 1996, 180(3), 671–707 http://dx.doi.org/10.1007/BF02099628 Zbl0873.17027
  9. [9] Feigin B., Jimbo M., Loktev S., Miwa T., Mukhin E., Bosonic formulas for (k, l)-admissible partitions, Ramanujan J., 2003, 7(4), 485–517; Addendum to “Bosonic formulas for (k, l)-admissible partitions”, Ramanujan J., 2003, 7(4), 519–530 http://dx.doi.org/10.1023/B:RAMA.0000012430.68976.c0 Zbl1039.05008
  10. [10] Feigin B., Jimbo M., Miwa T., Mukhin E., Takeyama Y., Fermionic formulas for (k, 3)-admissible configurations, Publ. Res. Inst. Math. Sci., 2004, 40(1), 125–162 http://dx.doi.org/10.2977/prims/1145475968 Zbl1134.17311
  11. [11] Feigin B., Kedem R., Loktev S., Miwa T., Mukhin E., Combinatorics of the 𝔰 𝔩 ^ 2 spaces of coinvariants, Transform. Groups, 2001, 6(1), 25–52 http://dx.doi.org/10.1007/BF01236061 Zbl1004.17001
  12. [12] Feigin E., The PBW filtration, Represent. Theory, 2009, 13, 165–181 http://dx.doi.org/10.1090/S1088-4165-09-00349-5 Zbl1229.17026
  13. [13] Frenkel I.B., Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal., 1981, 44(3), 259–327 http://dx.doi.org/10.1016/0022-1236(81)90012-4 
  14. [14] Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 1993, 104, #494 
  15. [15] Frenkel I.B., Kac V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 1980, 62(1), 23–66 http://dx.doi.org/10.1007/BF01391662 Zbl0493.17010
  16. [16] Fuchs J., Simple WZW currents, Comm. Math. Phys., 1991, 136(2), 345–356 http://dx.doi.org/10.1007/BF02100029 Zbl0736.17033
  17. [17] Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras. I. Principal subspace, J. Pure Appl. Algebra, 1996, 112(3), 247–286 http://dx.doi.org/10.1016/0022-4049(95)00143-3 
  18. [18] Huang Y.-Z., Lepowsky J., Toward a theory of tensor products for representations of a vertex operator algebra, In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, June 3–7, 1991, World Scientific, River Edge, 1992, 344–354 Zbl0829.17025
  19. [19] Kac V.G., Infinite-Dimensional Lie Algebras, 3rd ed, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511626234 Zbl0716.17022
  20. [20] Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, In: Infinite Analysis, Kyoto, June 1–August 31, 1991, Adv. Ser. Math. Phys., 16, World Scientific, River Edge, 1992, 449–484 Zbl0925.17005
  21. [21] Lepowsky J., Primc M., Structure of the Standard Modules for the Affine Lie Algebra A 1(1), Contemp. Math., 46, American Mathematical Society, Providence, 1985 http://dx.doi.org/10.1090/conm/046 Zbl0569.17007
  22. [22] Li H., Extension of vertex operator algebras by a self-dual simple module, J. Algebra, 1997, 187(1), 236–267 http://dx.doi.org/10.1006/jabr.1997.6795 
  23. [23] Li H., The physics superselection principle in vertex operator algebra theory, J. Algebra, 1997, 196(2), 436–457 http://dx.doi.org/10.1006/jabr.1997.7126 
  24. [24] Meurman A., Primc M., Vertex operator algebras and representations of affine Lie algebras, Acta Appl. Math., 1996, 44(1–2), 207–215 http://dx.doi.org/10.1007/BF00116522 Zbl0858.17024
  25. [25] Meurman A., Primc M., Annihilating Fields of Standard Modules of sl(2,ℂ)∼ and Combinatorial Identities, Mem. Amer. Math. Soc., 1999, 137, #652 Zbl0918.17018
  26. [26] Primc M., Vertex operator construction of standard modules for A n(1), Pacific J. Math., 1994, 162(1), 143–187 Zbl0787.17024
  27. [27] Primc M., Basic representations for classical affine Lie algebras, J. Algebra, 2000, 228(1), 1–50 http://dx.doi.org/10.1006/jabr.1999.7899 
  28. [28] Primc M., (k, r)-admissible configurations and intertwining operators, In: Lie Algebras, Vertex Operator Algebras and Their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 425–434 http://dx.doi.org/10.1090/conm/442/08540 
  29. [29] Stoyanovski A.V., Feigin B.L., Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funct. Anal. Appl., 1994, 28(1), 55–72 http://dx.doi.org/10.1007/BF01079010 Zbl0905.17030
  30. [30] Trupčević G., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard 𝔰 𝔩 ˜ ( + 1 , ) -modules, J. Algebra, 2009, 322(10), 3744–3774 http://dx.doi.org/10.1016/j.jalgebra.2009.07.024 Zbl1216.17008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.