Tauberian theorems for Abel limitability method

İbrahim Çanak; Ümit Totur

Open Mathematics (2008)

  • Volume: 6, Issue: 2, page 301-306
  • ISSN: 2391-5455

Abstract

top
This paper addresses conditions for the Abel method of limitability to imply convergence and subsequential convergence.

How to cite

top

İbrahim Çanak, and Ümit Totur. "Tauberian theorems for Abel limitability method." Open Mathematics 6.2 (2008): 301-306. <http://eudml.org/doc/269023>.

@article{İbrahimÇanak2008,
abstract = {This paper addresses conditions for the Abel method of limitability to imply convergence and subsequential convergence.},
author = {İbrahim Çanak, Ümit Totur},
journal = {Open Mathematics},
keywords = {Abel method of limitability; general control modulo; Tauberian conditions; slow oscillation; moderate oscillation; subsequential convergence; Abel summability},
language = {eng},
number = {2},
pages = {301-306},
title = {Tauberian theorems for Abel limitability method},
url = {http://eudml.org/doc/269023},
volume = {6},
year = {2008},
}

TY - JOUR
AU - İbrahim Çanak
AU - Ümit Totur
TI - Tauberian theorems for Abel limitability method
JO - Open Mathematics
PY - 2008
VL - 6
IS - 2
SP - 301
EP - 306
AB - This paper addresses conditions for the Abel method of limitability to imply convergence and subsequential convergence.
LA - eng
KW - Abel method of limitability; general control modulo; Tauberian conditions; slow oscillation; moderate oscillation; subsequential convergence; Abel summability
UR - http://eudml.org/doc/269023
ER -

References

top
  1. [1] Çanak İ., Totur Ü., A Tauberian theorem with a generalized one-sided condition, Abstr. Appl. Anal., 2007, 60360 Zbl1155.40304
  2. [2] Dik F., Tauberian theorems for convergence and subsequential convergence of sequences with controlled oscillatory behavior, Math. Morav., 2001, 5, 19–56 Zbl1047.40005
  3. [3] Dik M., Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav., 2001, 5, 57–94 Zbl1046.40004
  4. [4] Littlewood J.E., The converse of Abel’s theorem on power series, Proc. London Math. Soc., 1910, 9, 434–448 http://dx.doi.org/10.1112/plms/s2-9.1.434 Zbl42.0276.01
  5. [5] Rényi A., On a Tauberian theorem of O. Szász, Acta Univ. Szeged Sect. Sci. Math., 1946, 11, 119–123 Zbl0060.15703
  6. [6] Schmidt R., Über divergente folgen und lineare mittelbildungen, Math. Z., 1925, 22, 89–152 http://dx.doi.org/10.1007/BF01479600 Zbl51.0182.04
  7. [7] Stanojević Č.V., Analysis of Divergence: Control and Management of Divergent Process, Graduate Research Seminar Lecture Notes (Edited by İ. Çanak), University of Missouri-Rolla, 1998 
  8. [8] Stanojević Č.V., Analysis of Divergence: Applications to the Tauberian Theory, Graduate Research Seminar, University of Missouri - Rolla, 1999 
  9. [9] Stanojević Č.V., Stanojević V.B., Tauberian retrieval theory, Publ. Inst. Math., 2002, 71, 105–111 http://dx.doi.org/10.2298/PIM0271105S Zbl1027.40005
  10. [10] Tauber A., Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. Math. Phys., 1897, 8, 273–277 http://dx.doi.org/10.1007/BF01696278 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.