Composition operators on W 1 X are necessarily induced by quasiconformal mappings

Luděk Kleprlík

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1229-1238
  • ISSN: 2391-5455

Abstract

top
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.

How to cite

top

Luděk Kleprlík. "Composition operators on W 1 X are necessarily induced by quasiconformal mappings." Open Mathematics 12.8 (2014): 1229-1238. <http://eudml.org/doc/269482>.

@article{LuděkKleprlík2014,
abstract = {Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.},
author = {Luděk Kleprlík},
journal = {Open Mathematics},
keywords = {Sobolev space; Rearrangement invariant space; Quasiconformal mappings; Composition operator; rearrangement invariant space; quasiconformal mappings; composition operator},
language = {eng},
number = {8},
pages = {1229-1238},
title = {Composition operators on W 1 X are necessarily induced by quasiconformal mappings},
url = {http://eudml.org/doc/269482},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Luděk Kleprlík
TI - Composition operators on W 1 X are necessarily induced by quasiconformal mappings
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1229
EP - 1238
AB - Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
LA - eng
KW - Sobolev space; Rearrangement invariant space; Quasiconformal mappings; Composition operator; rearrangement invariant space; quasiconformal mappings; composition operator
UR - http://eudml.org/doc/269482
ER -

References

top
  1. [1] Astala V., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 Zbl1182.30001
  2. [2] Bastero J., Milman M., Ruiz F.J., Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces, Proc. Amer. Math. Soc., 2000, 128(1), 65–74 http://dx.doi.org/10.1090/S0002-9939-99-05128-X Zbl0942.42011
  3. [3] Bennett C., Sharpley R., Interpolation of Operators, Pure Appl. Math., 129, Academic Press, Boston, 1988 Zbl0647.46057
  4. [4] Ciesielski M., Kaminska A., Lebesgue’s differentiation theorems in r.i. quasi-Banach spaces and Lorentz spaces Γp,w, J. Funct. Spaces Appl., 2012, #682960 Zbl1246.46026
  5. [5] Farroni F., Giova R., Quasiconformal mappings and exponentially integrable functions, Studia Math., 2011, 203(2), 195–203 http://dx.doi.org/10.4064/sm203-2-5 Zbl1221.30053
  6. [6] Farroni F., Giova R., Quasiconformal mappings and sharp estimates for the distance to L ∞ in some function spaces, J. Math. Anal. Appl., 2012, 395(2), 694–704 http://dx.doi.org/10.1016/j.jmaa.2012.05.057 Zbl1272.30036
  7. [7] Fiorenza A., Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 2000, 51(2), 131–148 Zbl0960.46022
  8. [8] Gol’dshtein V., Gurov L., Romanov A., Homeomorphisms that induce monomorphisms of Sobolev spaces, Israel J. Math., 1995, 91(1–3), 31–60 http://dx.doi.org/10.1007/BF02761638 
  9. [9] HajŁasz P., Change of variables formula under minimal assumptions, Colloq. Math., 1993, 64(1), 93–101 Zbl0840.26009
  10. [10] Hencl S., Absolutely continuous functions of several variables and quasiconformal mappings, Z. Anal. Anwendungen, 2003, 22(4), 767–778 http://dx.doi.org/10.4171/ZAA/1172 Zbl1065.26017
  11. [11] Hencl S., Kleprlík L., Composition of q-quasiconformal mappings and functions in Orlicz-Sobolev spaces, Illinois J. Math., 2012, 56(3), 661–1000 
  12. [12] Hencl S., Kleprlík L., Malý J., Composition operator and Sobolev-Lorentz spaces WL n.q, preprint available at http://msekce.karlin.mff.cuni.cz/ms-preprints/kma-preprints/2012-pap/2012-404.pdf Zbl1293.30050
  13. [13] Hencl S., Koskela P., Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces, Math. Nachr., 2013, 286(7), 669–678 http://dx.doi.org/10.1002/mana.201100130 Zbl1271.46032
  14. [14] Hencl S., Malý J., Jacobians of Sobolev homeomorphisms, Calc. Var. Partial Differential Equations, 2010, 38(1–2), 233–242 http://dx.doi.org/10.1007/s00526-009-0284-8 Zbl1198.26016
  15. [15] Iwaniec T., Martin G., Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York, 2001 Zbl1045.30011
  16. [16] Kauhanen J., Koskela P., Malý J., Mappings of finite distortion: condition N, Michigan Math. J., 2001, 49(1), 169–181 http://dx.doi.org/10.1307/mmj/1008719040 Zbl0997.30018
  17. [17] Kleprlík L., Mappings of finite signed distortion: Sobolev spaces and composition of mappings, J. Math. Anal. Appl., 2012, 386(2), 870–881 http://dx.doi.org/10.1016/j.jmaa.2011.08.045 Zbl1236.46031
  18. [18] Koch H., Koskela P., Saksman E., Soto T., Bounded compositions on scaling invariant Besov spaces, preprint available at http://arxiv.org/abs/1209.6477 Zbl06320699
  19. [19] Koskela P., Lectures on quasiconformal and quasisymmetric mappings, Jyväskylä Lectures in Mathematics, 1, preprint available at http://users.jyu.fi/~pkoskela/quasifinal.pdf 
  20. [20] Koskela P., Yang D., Zhou Y., Pointwise characterization of Besov and Triebel-Lizorkin spaces and quasiconformal mappings, Adv. Math., 2011, 226(4), 3579–3621 http://dx.doi.org/10.1016/j.aim.2010.10.020 Zbl1217.46019
  21. [21] Pick L., Kufner A., John O., Fučík S., Function Spaces, I, 2nd ed., De Gruyter Ser. Nonlinear Anal. Appl., 14, Walter De Gruyter, Berlin, 2013 Zbl1275.46002
  22. [22] Reimann H.M., Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv., 1974, 49, 260–276 http://dx.doi.org/10.1007/BF02566734 Zbl0289.30027
  23. [23] Rickman S., Quasiregular Mappings, Ergeb. Math. Grenzgeb., 26, Springer, Berlin, 1993 http://dx.doi.org/10.1007/978-3-642-78201-5 
  24. [24] Tukia P., Väisälä J., Quasiconformal extension from dimension n to n + 1, Ann. Math., 1982, 115(2), 331–348 http://dx.doi.org/10.2307/1971394 Zbl0484.30017
  25. [25] Ziemer W.P., Weakly Differentiable Functions, Grad. Texts in Math., 120, Springer, New York, 1989 Zbl0692.46022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.