Evolution equations governed by Lipschitz continuous non-autonomous forms

Ahmed Sani; Hafida Laasri

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 475-491
  • ISSN: 0011-4642

Abstract

top
We prove L 2 -maximal regularity of the linear non-autonomous evolutionary Cauchy problem u ˙ ( t ) + A ( t ) u ( t ) = f ( t ) for a.e. t [ 0 , T ] , u ( 0 ) = u 0 , where the operator A ( t ) arises from a time depending sesquilinear form 𝔞 ( t , · , · ) on a Hilbert space H with constant domain V . We prove the maximal regularity in H when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of H .

How to cite

top

Sani, Ahmed, and Laasri, Hafida. "Evolution equations governed by Lipschitz continuous non-autonomous forms." Czechoslovak Mathematical Journal 65.2 (2015): 475-491. <http://eudml.org/doc/270101>.

@article{Sani2015,
abstract = {We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy problem\[ \dot\{u\} (t)+A(t)u(t)=f(t) \quad \text\{for a.e.\ \} t\in [0,T],\quad u(0)=u\_0, \] where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak \{a\}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$},
author = {Sani, Ahmed, Laasri, Hafida},
journal = {Czechoslovak Mathematical Journal},
keywords = {sesquilinear form; non-autonomous evolution equation; maximal regularity; convex set},
language = {eng},
number = {2},
pages = {475-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Evolution equations governed by Lipschitz continuous non-autonomous forms},
url = {http://eudml.org/doc/270101},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Sani, Ahmed
AU - Laasri, Hafida
TI - Evolution equations governed by Lipschitz continuous non-autonomous forms
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 475
EP - 491
AB - We prove $L^2$-maximal regularity of the linear non-autonomous evolutionary Cauchy problem\[ \dot{u} (t)+A(t)u(t)=f(t) \quad \text{for a.e.\ } t\in [0,T],\quad u(0)=u_0, \] where the operator $A(t)$ arises from a time depending sesquilinear form $\mathfrak {a}(t,\cdot ,\cdot )$ on a Hilbert space $H$ with constant domain $V.$ We prove the maximal regularity in $H$ when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of $H.$
LA - eng
KW - sesquilinear form; non-autonomous evolution equation; maximal regularity; convex set
UR - http://eudml.org/doc/270101
ER -

References

top
  1. Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics 96 Birkhäuser, Basel (2011). (2011) Zbl1226.34002MR2798103
  2. Arendt, W., Chill, R., Global existence for quasilinear diffusion equations in isotropic nondivergence form, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523-539. (2010) Zbl1223.35202MR2722654
  3. Arendt, W., Dier, D., Laasri, H., Ouhabaz, E. M., Maximal regularity for evolution equations governed by non-autonomous forms, Adv. Differ. Equ. 19 (2014), 1043-1066. (2014) MR3250762
  4. Arendt, W., Dier, D., Ouhabaz, E. M., 10.1112/jlms/jdt082, J. Lond. Math. Soc., II. Ser. 89 (2014), 903-916. (2014) MR3217655DOI10.1112/jlms/jdt082
  5. Bardos, C., 10.1016/0022-1236(71)90038-3, J. Funct. Anal. 7 (1971), 311-322. (1971) Zbl0214.12302MR0283433DOI10.1016/0022-1236(71)90038-3
  6. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer New York (2011). (2011) Zbl1220.46002MR2759829
  7. Dautray, R., Lions, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel, Collection Enseignement Masson, Paris French (1988). (1988) Zbl0749.35004MR1016604
  8. El-Mennaoui, O., Keyantuo, V., Laasri, H., Infinitesimal product of semigroups, Ulmer Seminare. Heft 16 (2011), 219-230. (2011) 
  9. Haak, B., Maati, O. El, Maximal regularity for non-autonomous evolution equations, Version available at: http://arxiv.org/abs/1402.1136v1. 
  10. Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics Springer, Berlin (1992). (1992) MR1335452
  11. Laasri, H., 10.1007/s00208-015-1199-7, Thèse de Doctorat Faculté des science, Agadir (2012), French DOI 10.1007/s00208-015-1199-7. (2012) DOI10.1007/s00208-015-1199-7
  12. Laasri, H., El-Mennaoui, O., 10.1007/s10587-013-0060-y, Czech. Math. J. 63 887-908 (2013). (2013) MR3165503DOI10.1007/s10587-013-0060-y
  13. Lions, J. L., Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften 111 Springer, Berlin French (1961). (1961) Zbl0098.31101MR0153974
  14. Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
  15. Ouhabaz, E. M., 10.1007/BF00275797, Potential Anal. 5 (1996), 611-625. (1996) Zbl0868.47029MR1437587DOI10.1007/BF00275797
  16. Ouhabaz, E. M., Spina, C., 10.1016/j.jde.2009.10.004, J. Differ. Equations 248 (2010), 1668-1683. (2010) Zbl1190.35132MR2593603DOI10.1016/j.jde.2009.10.004
  17. Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49, AMS Providence (1997). (1997) Zbl0870.35004MR1422252
  18. Slavík, A., Product Integration, Its History and Applications, Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1 Matfyzpress, Praha (2007). (2007) Zbl1216.28001MR2917851
  19. Tanabe, H., Equations of Evolution, Monographs and Studies in Mathematics 6 Pitman, London (1979). (1979) Zbl0417.35003MR0533824
  20. Thomaschewski, S., Form Methods for Autonomous and Non-Autonomous Cauchy Problems, PhD Thesis, Universität Ulm (2003). (2003) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.