Localization and delocalization for heavy tailed band matrices

Florent Benaych-Georges; Sandrine Péché

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 4, page 1385-1403
  • ISSN: 0246-0203

Abstract

top
We consider some random band matrices with band-width N μ whose entries are independent random variables with distribution tail in x - α . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when α l t ; 2 ( 1 + μ - 1 ) , the largest eigenvalues have order N ( 1 + μ ) / α , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles(2006) 351–364) when α l t ; 2 and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.45(2005) 589–610) when α l t ; 4 ). On the other hand, when α g t ; 2 ( 1 + μ - 1 ) , the largest eigenvalues have order N μ / 2 and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their N coordinates.

How to cite

top

Benaych-Georges, Florent, and Péché, Sandrine. "Localization and delocalization for heavy tailed band matrices." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1385-1403. <http://eudml.org/doc/272016>.

@article{Benaych2014,
abstract = {We consider some random band matrices with band-width $N^\{\mu \}$ whose entries are independent random variables with distribution tail in $x^\{-\alpha \}$. We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when $\alpha &lt;2(1+\mu ^\{-1\})$, the largest eigenvalues have order $N^\{(1+\mu )/\alpha \}$, are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles(2006) 351–364) when $\alpha &lt;2$ and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.45(2005) 589–610) when $\alpha &lt;4$). On the other hand, when $\alpha &gt;2(1+\mu ^\{-1\})$, the largest eigenvalues have order $N^\{\mu /2\}$ and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their $N$ coordinates.},
author = {Benaych-Georges, Florent, Péché, Sandrine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrices; band matrices; heavy tailed random variables; eigenvalue; eigenvector; phase transition; Poisson process},
language = {eng},
number = {4},
pages = {1385-1403},
publisher = {Gauthier-Villars},
title = {Localization and delocalization for heavy tailed band matrices},
url = {http://eudml.org/doc/272016},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Benaych-Georges, Florent
AU - Péché, Sandrine
TI - Localization and delocalization for heavy tailed band matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1385
EP - 1403
AB - We consider some random band matrices with band-width $N^{\mu }$ whose entries are independent random variables with distribution tail in $x^{-\alpha }$. We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when $\alpha &lt;2(1+\mu ^{-1})$, the largest eigenvalues have order $N^{(1+\mu )/\alpha }$, are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82–91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles(2006) 351–364) when $\alpha &lt;2$ and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist.45(2005) 589–610) when $\alpha &lt;4$). On the other hand, when $\alpha &gt;2(1+\mu ^{-1})$, the largest eigenvalues have order $N^{\mu /2}$ and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their $N$ coordinates.
LA - eng
KW - random matrices; band matrices; heavy tailed random variables; eigenvalue; eigenvector; phase transition; Poisson process
UR - http://eudml.org/doc/272016
ER -

References

top
  1. [1] A. Auffinger, G. Ben Arous and S. Péché. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589–610. Zbl1177.15037MR2548495
  2. [2] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. Zbl1301.60002MR2567175
  3. [3] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. Zbl0863.15001MR1477662
  4. [4] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. Zbl1139.15303MR2325304
  5. [5] G. Ben Arous and A. Guionnet. The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715–751. Zbl1157.60005MR2373441
  6. [6] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge, 1989. Zbl0667.26003MR1015093
  7. [7] C. Bordenave and A. Guionnet. Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. Zbl1296.15019MR3129806
  8. [8] P. Cizeau and J.-P. Bouchaud. Theory of Lévy matrices. Phys. Rev. E50 (1994) 1810–1822. 
  9. [9] L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New York, 2001. Zbl0964.62025MR1843146
  10. [10] L. Erdös. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk66 (2011) 67–198. Zbl1230.82032MR2859190
  11. [11] L. Erdös and A. Knowles. Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509–554. Zbl1226.15024MR2782623
  12. [12] L. Erdös and A. Knowles. Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227–1319. Zbl1247.15033MR2846669
  13. [13] L. Erdös, A. Knowles, H.-T. Yau and J. Yin. Delocalization and diffusion profile for random band matrices. Comm. Math. Phys.323 (2013) 367–416. Zbl1279.15027MR3085669
  14. [14] L. Erdös, B. Schlein and H. T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys.287 (2009), 641–655. Zbl1186.60005MR2481753
  15. [15] L. Erdös, B. Schlein and H. T. Yau. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob.37 (2009) 815–852. Zbl1175.15028MR2537522
  16. [16] L. Erdös, B. Schlein and H. T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not.2010 (2010) 436–479. Zbl1204.15043MR2587574
  17. [17] W. Feller. An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. Zbl0219.60003MR210154
  18. [18] Y. V. Fyodorov and A. D. Mirlin. Scaling properties of localization in random band matrices: A σ -model approach. Phys. Rev. Lett. 67 (18) (1991) 2405–2409. Zbl0990.82529MR1130103
  19. [19] A. Knowles and J. Yin. Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields155 (2013) 543–582. Zbl1268.15033MR3034787
  20. [20] A. Knowles and J. Yin. The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. Zbl1306.15034MR3262497
  21. [21] M. R. Leadbetter, G. Lindgren and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. Zbl0518.60021MR691492
  22. [22] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5–6) (2007) 857–884. Zbl1139.82019MR2363385
  23. [23] R. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. Zbl1136.60004MR900810
  24. [24] J. Schenker. Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065–1097. Zbl1179.82079MR2525652
  25. [25] Y. Sinai and A. Soshnikov. A refinement of Wigner’s semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56–79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114–131. Zbl0930.15025MR1647832
  26. [26] S. Sodin. The spectral edge of some random band matrices. Ann. Math.172 (2010) 2223–2251. Zbl1210.15039MR2726110
  27. [27] Y. Sinai and A. Soshnikov. Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1–24. Zbl0912.15027MR1620151
  28. [28] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697–733. Zbl1062.82502MR1727234
  29. [29] A. Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab.9 (2004) 82–91. Zbl1060.60013MR2081462
  30. [30] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351–364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. Zbl1169.15302MR2234922
  31. [31] T. Spencer. Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471–488. Oxford Univ. Press, Oxford, 2011. Zbl1236.15074MR2932643
  32. [32] T. Tao and V. Vu. Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. Zbl1248.15031MR2930379
  33. [33] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549–572. Zbl1202.15038MR2669449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.