Nonconventional limit theorems in averaging

Yuri Kifer

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 1, page 236-255
  • ISSN: 0246-0203

Abstract

top
We consider “nonconventional” averaging setup in the form d X ε ( t ) d t = ε B ( X ε ( t ) , 𝛯 ( q 1 ( t ) ) , 𝛯 ( q 2 ( t ) ) , ... , 𝛯 ( q ( t ) ) ) where 𝛯 ( t ) , t 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j ( t ) = α j t , α 1 l t ; α 2 l t ; l t ; α k and q j , j = k + 1 , ... , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

How to cite

top

Kifer, Yuri. "Nonconventional limit theorems in averaging." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 236-255. <http://eudml.org/doc/272087>.

@article{Kifer2014,
abstract = {We consider “nonconventional” averaging setup in the form $\frac\{\mathrm \{d\}X^\{\varepsilon \}(t)\}\{\mathrm \{d\}t\}=\varepsilon B(X^\{\varepsilon \}(t)$, $\varXi (q_\{1\}(t)),\varXi (q_\{2\}(t)),\ldots ,\varXi (q_\{\ell \}(t)))$ where $\varXi (t)$, $t\ge 0$ is either a stochastic process or a dynamical system with sufficiently fast mixing while $q_\{j\}(t)=\{\alpha \}_\{j\}t$, $\{\alpha \}_\{1\}&lt;\{\alpha \}_\{2\}&lt;\cdots &lt;\{\alpha \}_\{k\}$ and $q_\{j\}$, $j=k+1,\ldots ,\ell $ grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.},
author = {Kifer, Yuri},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {averaging; limit theorems; martingales; hyperbolic dynamical systems},
language = {eng},
number = {1},
pages = {236-255},
publisher = {Gauthier-Villars},
title = {Nonconventional limit theorems in averaging},
url = {http://eudml.org/doc/272087},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Kifer, Yuri
TI - Nonconventional limit theorems in averaging
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 236
EP - 255
AB - We consider “nonconventional” averaging setup in the form $\frac{\mathrm {d}X^{\varepsilon }(t)}{\mathrm {d}t}=\varepsilon B(X^{\varepsilon }(t)$, $\varXi (q_{1}(t)),\varXi (q_{2}(t)),\ldots ,\varXi (q_{\ell }(t)))$ where $\varXi (t)$, $t\ge 0$ is either a stochastic process or a dynamical system with sufficiently fast mixing while $q_{j}(t)={\alpha }_{j}t$, ${\alpha }_{1}&lt;{\alpha }_{2}&lt;\cdots &lt;{\alpha }_{k}$ and $q_{j}$, $j=k+1,\ldots ,\ell $ grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.
LA - eng
KW - averaging; limit theorems; martingales; hyperbolic dynamical systems
UR - http://eudml.org/doc/272087
ER -

References

top
  1. [1] I. Assani. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math.103 (1998) 111–124. Zbl0920.28011MR1613556
  2. [2] V. Bergelson. Weakly mixing PET. Ergodic Theory Dynam. Systems7 (1987) 337–349. Zbl0645.28012MR912373
  3. [3] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. Zbl0308.28010MR442989
  4. [4] A. N. Borodin. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl.22 (1977) 482–497. Zbl0412.60067MR517995
  5. [5] R. C. Bradley. Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. Zbl1134.60004
  6. [6] V. Bergelson, A. Leibman and C. G. Moreira. From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems.32 (2012) 383–426. Zbl1251.37004MR2901353
  7. [7] D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357–390. Zbl0911.58029MR1626749
  8. [8] D. Dolgopyat. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc.356 (2003) 1637–1689. Zbl1031.37031MR2034323
  9. [9] D. Dolgopyat. Averaging and invariant measures. Mosc. Math. J.5 (2005) 537–576. Zbl05140621MR2241812
  10. [10] J. Doob. Stochastic Processes. Wiley, New York, 1953. Zbl0696.60003MR58896
  11. [11] D. Dolgopyat and C. Liverani. Energy transfer in a fast–slow Hamiltonian system. Comm. Math. Phys.308 (2011) 201–225. Zbl1235.82065MR2842975
  12. [12] H. Furstenberg. Nonconventional ergodic averages. Proc. Sympos Pure Math.50 (1990) 43–56. Zbl0711.28006MR1067751
  13. [13] M. Field, I. Melbourne and A. Torok. Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems23 (2003) 87–110. Zbl1140.37315MR1971198
  14. [14] M. Field, I. Melbourne and A. Torok. Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269–291. Zbl1140.37004MR2342697
  15. [15] L. Heinrich. Mixing properties and central limit theorem for a class of non-identical piecewise monotonic C 2 -transformations. Math. Nachr.181 (1996) 185–214. Zbl0863.60023MR1409076
  16. [16] I. A. Ibragimov and Y. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters–Noordhoff, Groningen, 1971. Zbl0219.60027MR322926
  17. [17] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. Zbl0635.60021MR1943877
  18. [18] R. Z. Khasminskii. On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl.11 (1966) 211–228. Zbl0168.16002MR203788
  19. [19] R. Z. Khasminskii. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl.11 (1966) 390–406. Zbl0202.48601
  20. [20] Yu. Kifer. Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems15 (1995) 1143–1172. Zbl0841.34048MR1366312
  21. [21] Yu. Kifer. Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems24 (2004) 847–871. Zbl1055.37025MR2062922
  22. [22] Y. Kifer. Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. Zbl1255.60044MR2926580
  23. [23] Y. Kifer. A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1–2) (2013) 463–486. Zbl1271.60047MR3010405
  24. [24] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. Zbl0878.58019MR1326374
  25. [25] Yu. Kifer and S. R. S. Varadhan. Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. Zbl1304.60041MR3178470
  26. [26] C. Liverani. Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56–75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. Zbl0871.58055MR1460797
  27. [27] D. L. McLeish. Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete32 (1975) 165–178. Zbl0288.60034MR388483
  28. [28] D. L. McLeish. On the invariance principle for nonstationary mixingales. Ann. Probab.5 (1977) 616–621. Zbl0367.60021MR445583
  29. [29] J. A. Sanders, F. Verhurst and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. Zbl1128.34001MR2316999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.