On the de Rham and p -adic realizations of the elliptic polylogarithm for CM elliptic curves

Kenichi Bannai; Shinichi Kobayashi; Takeshi Tsuji

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 2, page 185-234
  • ISSN: 0012-9593

Abstract

top
In this paper, we give an explicit description of the de Rham and p -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve E defined over an imaginary quadratic field 𝕂 with complex multiplication by the full ring of integers 𝒪 𝕂 of 𝕂 . Note that our condition implies that 𝕂 has class number one. Assume in addition that E has good reduction above a prime p 5 unramified in 𝒪 𝕂 . In this case, we prove that the specializations of the p -adic elliptic polylogarithm to torsion points of E of order prime to p are related to p -adic Eisenstein-Kronecker numbers. Our result is valid even if E has supersingular reduction at p . This is a p -adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When p is ordinary, then we relate the p -adic Eisenstein-Kronecker numbers to special values of p -adic L -functions associated to certain Hecke characters of 𝕂 .

How to cite

top

Bannai, Kenichi, Kobayashi, Shinichi, and Tsuji, Takeshi. "On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves." Annales scientifiques de l'École Normale Supérieure 43.2 (2010): 185-234. <http://eudml.org/doc/272129>.

@article{Bannai2010,
abstract = {In this paper, we give an explicit description of the de Rham and $p$-adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve $E$ defined over an imaginary quadratic field $\mathbb \{K\}$ with complex multiplication by the full ring of integers $\mathcal \{O\}_\mathbb \{K\}$ of $\mathbb \{K\}$. Note that our condition implies that $\mathbb \{K\}$ has class number one. Assume in addition that $E$ has good reduction above a prime $p \ge 5$ unramified in $\mathcal \{O\}_\mathbb \{K\}$. In this case, we prove that the specializations of the $p$-adic elliptic polylogarithm to torsion points of $E$ of order prime to $p$ are related to $p$-adic Eisenstein-Kronecker numbers. Our result is valid even if $E$ has supersingular reduction at $p$. This is a $p$-adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When $p$ is ordinary, then we relate the $p$-adic Eisenstein-Kronecker numbers to special values of $p$-adic $L$-functions associated to certain Hecke characters of $\mathbb \{K\}$.},
author = {Bannai, Kenichi, Kobayashi, Shinichi, Tsuji, Takeshi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {elliptic curves; complex multiplication; elliptic polylogarithms; $p$-adic $L$-functions},
language = {eng},
number = {2},
pages = {185-234},
publisher = {Société mathématique de France},
title = {On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves},
url = {http://eudml.org/doc/272129},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Bannai, Kenichi
AU - Kobayashi, Shinichi
AU - Tsuji, Takeshi
TI - On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 2
SP - 185
EP - 234
AB - In this paper, we give an explicit description of the de Rham and $p$-adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve $E$ defined over an imaginary quadratic field $\mathbb {K}$ with complex multiplication by the full ring of integers $\mathcal {O}_\mathbb {K}$ of $\mathbb {K}$. Note that our condition implies that $\mathbb {K}$ has class number one. Assume in addition that $E$ has good reduction above a prime $p \ge 5$ unramified in $\mathcal {O}_\mathbb {K}$. In this case, we prove that the specializations of the $p$-adic elliptic polylogarithm to torsion points of $E$ of order prime to $p$ are related to $p$-adic Eisenstein-Kronecker numbers. Our result is valid even if $E$ has supersingular reduction at $p$. This is a $p$-adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When $p$ is ordinary, then we relate the $p$-adic Eisenstein-Kronecker numbers to special values of $p$-adic $L$-functions associated to certain Hecke characters of $\mathbb {K}$.
LA - eng
KW - elliptic curves; complex multiplication; elliptic polylogarithms; $p$-adic $L$-functions
UR - http://eudml.org/doc/272129
ER -

References

top
  1. [1] M. Abramowitz & I. A. Stegun (éds.), Weierstrass elliptic and related functions, Ch. 18, in Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., 1992, p. 627–671. Zbl0643.33001MR1225604
  2. [2] F. Baldassarri & B. Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, 1994, 11–50. Zbl0833.14010MR1307391
  3. [3] K. Bannai, Rigid syntomic cohomology and p -adic polylogarithms, J. reine angew. Math. 529 (2000), 205–237. Zbl1006.19002MR1799937
  4. [4] K. Bannai, On the p -adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J.113 (2002), 193–236. Zbl1019.11018MR1909217
  5. [5] K. Bannai & G. Kings, p -adic elliptic polylogarithm, p -adic Eisenstein series and Katz measure, preprint arXiv:0707.3747, to appear in Amer. J. Math. Zbl1225.11075MR2766179
  6. [6] K. Bannai & S. Kobayashi, Algebraic theta functions and p -adic interpolation of Eisenstein-Kronecker numbers, preprint arXiv:math.NT/0610163, to appear in Duke Math. J. Zbl1205.11076MR2667134
  7. [7] A. Beĭlinson & A. Levin, The elliptic polylogarithm, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 123–190. Zbl0817.14014MR1265553
  8. [8] P. Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique p , Mém. Soc. Math. France (N.S.) 23 (1986), 7–32. Zbl0606.14017MR865810
  9. [9] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, première partie, preprint IRMAR 96-03, 1996. 
  10. [10] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (1997), 329–377. Zbl0908.14005MR1440308
  11. [11] J. L. Boxall, A new construction of 𝔭 -adic L -functions attached to certain elliptic curves with complex multiplication, Ann. Inst. Fourier (Grenoble) 36 (1986), 31–68. Zbl0608.14015MR867915
  12. [12] J. L. Boxall, p -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 1–27. Zbl0587.12007MR865657
  13. [13] P. Colmez, Fonctions L p -adiques, Séminaire Bourbaki, vol. 1998/99, exposé no 851, Astérisque 266 (2000), 21–58. Zbl0964.11055MR1772669
  14. [14] R. M. Damerell, L -functions of elliptic curves with complex multiplication. I, Acta Arith. 17 (1970), 287–301. Zbl0209.24603
  15. [15] R. M. Damerell, L -functions of elliptic curves with complex multiplication. II, Acta Arith. 19 (1971), 311–317. Zbl0229.12015
  16. [16] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3–80. Zbl0429.14016
  17. [17] A. Huber & G. Kings, Degeneration of l -adic Eisenstein classes and of the elliptic polylog, Invent. Math.135 (1999), 545–594. Zbl0955.11027
  18. [18] A. Huber & J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27–133; correction: idem, 297–299. Zbl0906.19004
  19. [19] N. M. Katz, p -adic interpolation of real analytic Eisenstein series, Ann. of Math.104 (1976), 459–571. Zbl0354.14007
  20. [20] A. Levin, Elliptic polylogarithms: an analytic theory, Compositio Math.106 (1997), 267–282. Zbl0905.11028
  21. [21] A. Levin & G. Racinet, Towards multiple elliptic polylogarithm, preprint arXiv:math/0703237. 
  22. [22] J. I. Manin & M. M. Višik, p -adic Hecke series of imaginary quadratic fields, Mat. Sb. (N.S.) 95 (1974), 357–383. Zbl0352.12013
  23. [23] P. Monsky & G. Washnitzer, Formal cohomology. I, Ann. of Math. 88 (1968), 181–217. Zbl0162.52504
  24. [24] B. Perrin-Riou, Fonctions L p -adiques des représentations p -adiques, Astérisque 229 (1995). Zbl0845.11040
  25. [25] P. Schneider & J. Teitelbaum, p -adic Fourier theory, Doc. Math.6 (2001), 447–481. Zbl1028.11069MR1871671
  26. [26] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3, Academic Press Inc., 1987. Zbl0674.12004MR917944
  27. [27] A. Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1–163. Zbl1057.14025MR1889223
  28. [28] N. Solomon, p -adic elliptic polylogarithms and arithmetic applications, Thèse, Ben-Gurion University, 2009. 
  29. [29] N. Tsuzuki, On base change theorem and coherence in rigid cohomology, Doc. Math. extra vol. (2003), 891–918. Zbl1093.14503MR2046617
  30. [30] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebn. Math. Grenzg. 88, Springer, 1976. Zbl0318.33004MR562289
  31. [31] E. Weisstein, Weierstrass sigma function, http://mathworld.wolfram.com/WeierstrassSigmaFunction.html. 
  32. [32] J. Wildeshaus, Realizations of polylogarithms, Lecture Notes in Math. 1650, Springer, 1997. Zbl0877.11001MR1482233
  33. [33] S. Yamamoto, On p -adic L -functions for CM elliptic curves at supersingular primes, Mémoire, University of Tokyo, 2002. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.