The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Strong bifurcation loci of full Hausdorff dimension

Thomas Gauthier

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 6, page 947-984
  • ISSN: 0012-9593

Abstract

top
In the moduli space d of degree  d rational maps, the bifurcation locus is the support of a closed ( 1 , 1 ) positive current T bif which is called the bifurcation current. This current gives rise to a measure μ bif : = ( T bif ) 2 d - 2 whose support is the seat of strong bifurcations. Our main result says that supp ( μ bif ) has maximal Hausdorff dimension 2 ( 2 d - 2 ) . As a consequence, the set of degree  d rational maps having ( 2 d - 2 ) distinct neutral cycles is dense in a set of full Hausdorff dimension.

How to cite

top

Gauthier, Thomas. "Strong bifurcation loci of full Hausdorff dimension." Annales scientifiques de l'École Normale Supérieure 45.6 (2012): 947-984. <http://eudml.org/doc/272166>.

@article{Gauthier2012,
abstract = {In the moduli space $\mathcal \{M\}_d$ of degree $d$ rational maps, the bifurcation locus is the support of a closed $(1,1)$ positive current $T_\mathrm \{bif\}$ which is called the bifurcation current. This current gives rise to a measure $\mu _\mathrm \{bif\}:=(T_\mathrm \{bif\})^\{2d-2\}$ whose support is the seat of strong bifurcations. Our main result says that $\mathrm \{supp\}(\mu _\mathrm \{bif\})$ has maximal Hausdorff dimension $2(2d-2)$. As a consequence, the set of degree $d$ rational maps having $(2d-2)$ distinct neutral cycles is dense in a set of full Hausdorff dimension.},
author = {Gauthier, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex dynamics; bifurcations; pluripotential theory; Hausdorff dimension},
language = {eng},
number = {6},
pages = {947-984},
publisher = {Société mathématique de France},
title = {Strong bifurcation loci of full Hausdorff dimension},
url = {http://eudml.org/doc/272166},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Gauthier, Thomas
TI - Strong bifurcation loci of full Hausdorff dimension
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 6
SP - 947
EP - 984
AB - In the moduli space $\mathcal {M}_d$ of degree $d$ rational maps, the bifurcation locus is the support of a closed $(1,1)$ positive current $T_\mathrm {bif}$ which is called the bifurcation current. This current gives rise to a measure $\mu _\mathrm {bif}:=(T_\mathrm {bif})^{2d-2}$ whose support is the seat of strong bifurcations. Our main result says that $\mathrm {supp}(\mu _\mathrm {bif})$ has maximal Hausdorff dimension $2(2d-2)$. As a consequence, the set of degree $d$ rational maps having $(2d-2)$ distinct neutral cycles is dense in a set of full Hausdorff dimension.
LA - eng
KW - complex dynamics; bifurcations; pluripotential theory; Hausdorff dimension
UR - http://eudml.org/doc/272166
ER -

References

top
  1. [1] M. Aspenberg, Rational Misiurewicz maps are rare, Comm. Math. Phys.291 (2009), 645–658. Zbl1185.37103MR2534788
  2. [2] M. Aspenberg & J. Graczyk, Dimension and measure for semi-hyperbolic rational maps of degree 2, C. R. Math. Acad. Sci. Paris347 (2009), 395–400. Zbl1215.37030MR2537237
  3. [3] G. Bassanelli & F. Berteloot, Bifurcation currents in holomorphic dynamics on k , J. reine angew. Math. 608 (2007), 201–235. Zbl1136.37025MR2339474
  4. [4] G. Bassanelli & F. Berteloot, Lyapunov exponents, bifurcation currents and laminations in bifurcation loci, Math. Ann.345 (2009), 1–23. Zbl1179.37067MR2520048
  5. [5] G. Bassanelli & F. Berteloot, Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J.201 (2011), 23–43. Zbl1267.37049MR2772169
  6. [6] E. Bedford & B. A. Taylor, The Dirichlet problem for a complex Monge-Ampere equation, Bull. Amer. Math. Soc.82 (1976), 102–104. Zbl0322.31008MR393574
  7. [7] L. Bers & H. L. Royden, Holomorphic families of injections, Acta Math.157 (1986), 259–286. Zbl0619.30027MR857675
  8. [8] F. Berteloot, C. Dupont & L. Molino, Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble) 58 (2008), 2137–2168. Zbl1151.37038MR2473632
  9. [9] F. Berteloot & V. Mayer, Rudiments de dynamique holomorphe, Cours Spécialisés 7, Soc. Math. France, 2001. Zbl1051.37019MR1973050
  10. [10] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143–206. Zbl0668.30008MR945011
  11. [11] X. Buff & A. L. Epstein, Bifurcation measure and postcritically finite rational maps, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 491–512. Zbl1180.37056MR2508266
  12. [12] E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series) 46, Kluwer Academic Publishers Group, 1989. Zbl0683.32002MR1111477
  13. [13] L. DeMarco, Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett.8 (2001), 57–66. Zbl0991.37030MR1825260
  14. [14] L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann.326 (2003), 43–73. Zbl1032.37029MR1981611
  15. [15] T.-C. Dinh & N. Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, Lecture Notes in Math. 1998, Springer, 2010, 165–294. Zbl1218.37055MR2648690
  16. [16] R. Dujardin, Approximation des fonctions lisses sur certaines laminations, Indiana Univ. Math. J.55 (2006), 579–592. Zbl1102.53014MR2225446
  17. [17] R. Dujardin, Cubic polynomials: a measurable view on parameter space, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 451–490. Zbl1180.37058MR2508265
  18. [18] R. Dujardin & C. Favre, Distribution of rational maps with a preperiodic critical point, Amer. J. Math.130 (2008), 979–1032. Zbl1246.37071MR2427006
  19. [19] R. Mañé, P. Sad & D. P. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup.16 (1983), 193–217. Zbl0524.58025MR732343
  20. [20] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. Zbl0819.28004MR1333890
  21. [21] C. T. McMullen, Complex dynamics and renormalization, Annals of Math. Studies 135, Princeton Univ. Press, 1994. Zbl0822.30002MR1312365
  22. [22] C. T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535–593. Zbl0982.37043MR1789177
  23. [23] C. T. McMullen, The Mandelbrot set is universal, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 1–17. Zbl1062.37042MR1765082
  24. [24] C. T. McMullen & D. P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351–395. Zbl0926.30028MR1620850
  25. [25] W. de Melo & S. van Strien, One-dimensional dynamics, Ergebn. Math. Grenzg. 25, Springer, 1993. Zbl0791.58003MR1239171
  26. [26] J. Milnor, On Lattès maps, in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, 9–43. Zbl1235.37015MR2348953
  27. [27] J. Rivera-Letelier, On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math.170 (2001), 287–317. Zbl0985.37041MR1880905
  28. [28] W. Rudin, Real and complex analysis, third éd., McGraw-Hill Book Co., 1987. Zbl0278.26001MR924157
  29. [29] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math.147 (1998), 225–267. Zbl0922.58047MR1626737
  30. [30] M. Shishikura & L. Tan, An alternative proof of Mañé’s theorem on non-expanding Julia sets, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 265–279. Zbl1062.37046MR1765093
  31. [31] N. Sibony, Dynamique des applications rationnelles de 𝐏 k , in Dynamique et géométrie complexes (Lyon, 1997), Panor. & Synthèses 8, Soc. Math. France, 1999. Zbl1020.37026MR1760844
  32. [32] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer, 2007. Zbl1130.37001MR2316407
  33. [33] S. van Strien, Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math.163 (2000), 39–54. Zbl0965.37038MR1750334
  34. [34] L. Tan, Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura’s result), Nonlinearity 11 (1998), 233–246. Zbl1019.37502MR1610752
  35. [35] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems14 (1994), 391–414. Zbl0807.58025MR1279476

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.