Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze

Carlos D’Andrea; Teresa Krick; Martín Sombra

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 4, page 549-627
  • ISSN: 0012-9593

Abstract

top
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.

How to cite

top

D’Andrea, Carlos, Krick, Teresa, and Sombra, Martín. "Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze." Annales scientifiques de l'École Normale Supérieure 46.4 (2013): 549-627. <http://eudml.org/doc/272167>.

@article{D2013,
abstract = {We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.},
author = {D’Andrea, Carlos, Krick, Teresa, Sombra, Martín},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {multiprojective spaces; mixed heights; resultants; implicitization; arithmetic nullstellensatz},
language = {eng},
number = {4},
pages = {549-627},
publisher = {Société mathématique de France},
title = {Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze},
url = {http://eudml.org/doc/272167},
volume = {46},
year = {2013},
}

TY - JOUR
AU - D’Andrea, Carlos
AU - Krick, Teresa
AU - Sombra, Martín
TI - Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 4
SP - 549
EP - 627
AB - We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.
LA - eng
KW - multiprojective spaces; mixed heights; resultants; implicitization; arithmetic nullstellensatz
UR - http://eudml.org/doc/272167
ER -

References

top
  1. [1] M. Aschenbrenner, Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc.17 (2004), 407–441. Zbl1099.13045MR2051617
  2. [2] C. A. Berenstein & A. Yger, Effective Bézout identities in [ z 1 , ... , z n ] , Acta Math.166 (1991), 69–120. MR1088983
  3. [3] Y. F. Bilu & M. Strambi, Quantitative Riemann existence theorem over a number field, Acta Arith.145 (2010), 319–339. Zbl1222.11082MR2738151
  4. [4] E. Bombieri, J. Bourgain & S. V. Konyagin, Roots of polynomials in subgroups of 𝔽 p * and applications to congruences, Int. Math. Res. Not.2009 (2009), 802–834. Zbl1213.11058MR2482126
  5. [5] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math.126 (1987), 577–591. Zbl0641.14001MR916719
  6. [6] W. D. Brownawell, The Hilbert Nullstellensatz, inequalities for polynomials, and algebraic independence, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 239–248. MR1837838
  7. [7] J. I. Burgos Gil, P. Philippon & M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, preprint arXiv:1105.5584. Zbl1311.14050
  8. [8] W.-L. Chow & B. L. van der Waerden, Zur algebraischen Geometrie. IX, Math. Ann. 113 (1937), 692–704. Zbl0016.04004MR1513117
  9. [9] X. Dahan, A. Kadri & É. Schost, Bit-size estimates for triangular sets in positive dimension, J. Complexity28 (2012), 109–135. Zbl1246.13039MR2871788
  10. [10] S. David & P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999), 489–543. MR1736526
  11. [11] W. Fulton, Intersection theory, Ergebn. Math. Grenzg. 2, Springer, 1984. Zbl0541.14005MR732620
  12. [12] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. Zbl0827.14036
  13. [13] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR463157
  14. [14] Z. Jelonek, On the effective Nullstellensatz, Invent. Math.162 (2005), 1–17. MR2198324
  15. [15] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Math. 42, Birkhäuser, 1983. MR725671
  16. [16] P. Koiran, Hilbert’s Nullstellensatz is in the polynomial hierarchy, J. Complexity12 (1996), 273–286. Zbl0862.68053MR1422712
  17. [17] A. Kresch & Y. Tschinkel, Effectivity of Brauer-Manin obstructions, Adv. Math.218 (2008), 1–27. Zbl1142.14013MR2409407
  18. [18] T. Krick & L. M. Pardo, A computational method for Diophantine approximation, in Algorithms in algebraic geometry and applications (Santander, 1994), Progr. Math. 143, Birkhäuser, 1996, 193–253. Zbl0878.11043MR1414452
  19. [19] T. Krick, L. M. Pardo & M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J.109 (2001), 521–598. Zbl1010.11035MR1853355
  20. [20] S. Lang, Fundamentals of Diophantine geometry, Springer, 1983. Zbl0528.14013MR715605
  21. [21] S. Lang, Algebra, third éd., Addison-Wesley Publishing Co., Inc., Reading, Mass., 1993. MR783636
  22. [22] P. Lelong, Mesure de Mahler et calcul de constantes universelles pour les polynômes de n variables, Math. Ann.299 (1994), 673–695. Zbl0816.31006MR1286891
  23. [23] F. S. Macaulay, Some formulae in elimination, Proc. London Math. Soc.1 (1902), 3–27. Zbl34.0195.01MR1577000
  24. [24] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France 80, 2000. Zbl0963.14009
  25. [25] P. Pedersen & B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z.214 (1993), 377–396. Zbl0792.13006MR1245200
  26. [26] O. Perron, Algebra. I. Die Grundlagen, Walter de Gruyter & Co., 1951. MR38319
  27. [27] P. Philippon, Critères pour l’indépendance algébrique, Publ. Math. I.H.É.S. 64 (1986), 5–52. MR876159
  28. [28] P. Philippon, Dénominateurs dans le théorème des zéros de Hilbert, Acta Arith.58 (1991), 1–25. Zbl0679.13010MR1111087
  29. [29] P. Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), 255–283. MR1092175
  30. [30] P. Philippon, Sur des hauteurs alternatives. III, J. Math. Pures Appl. 74 (1995), 345–365. MR1341770
  31. [31] P. Philippon & M. Sombra, Hauteur normalisée des variétés toriques projectives, J. Inst. Math. Jussieu7 (2008), 327–373. MR2400725
  32. [32] G. Rémond, Élimination multihomogène, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 53–81. 
  33. [33] G. Rémond, Géométrie diophantienne multiprojective, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 95–131. 
  34. [34] G. Rémond, Nombre de points rationnels des courbes, Proc. Lond. Math. Soc.101 (2010), 759–794. Zbl1210.11073MR2734960
  35. [35] F. Smietanski, A parametrized Nullstellensatz, in Computational algebraic geometry (Nice, 1992), Progr. Math. 109, Birkhäuser, 1993, 287–300. MR1230873
  36. [36] C. J. Smyth, A Kronecker-type theorem for complex polynomials in several variables, Canad. Math. Bull.24 (1981), 447–452. Zbl0475.12002MR644534
  37. [37] M. Sombra, The height of the mixed sparse resultant, Amer. J. Math.126 (2004), 1253–1260. Zbl1070.11010MR2102395
  38. [38] B. Teissier, Résultats récents d’algèbre commutative effective, Séminaire Bourbaki, vol. 1989/90, exposé no 718, Astérisque 189-190 (1990), 107–131. MR1099873

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.