Robust transitivity in hamiltonian dynamics

Meysam Nassiri; Enrique R. Pujals

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 2, page 191-239
  • ISSN: 0012-9593

Abstract

top
A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce C r open sets ( r = 1 , 2 , , ) of symplectic diffeomorphisms and Hamiltonian systems, exhibitinglargerobustly transitive sets. We show that the C closure of such open sets contains a variety of systems, including so-calleda priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call “symplectic blender”.

How to cite

top

Nassiri, Meysam, and Pujals, Enrique R.. "Robust transitivity in hamiltonian dynamics." Annales scientifiques de l'École Normale Supérieure 45.2 (2012): 191-239. <http://eudml.org/doc/272173>.

@article{Nassiri2012,
abstract = {A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce $C^\{r\}$ open sets ($r=1, 2, \dots , \infty $) of symplectic diffeomorphisms and Hamiltonian systems, exhibitinglargerobustly transitive sets. We show that the $C^\{\infty \}$ closure of such open sets contains a variety of systems, including so-calleda priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call “symplectic blender”.},
author = {Nassiri, Meysam, Pujals, Enrique R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic blender; robust transitivity; hamiltonian dynamics; instability problem},
language = {eng},
number = {2},
pages = {191-239},
publisher = {Société mathématique de France},
title = {Robust transitivity in hamiltonian dynamics},
url = {http://eudml.org/doc/272173},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Nassiri, Meysam
AU - Pujals, Enrique R.
TI - Robust transitivity in hamiltonian dynamics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 2
SP - 191
EP - 239
AB - A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce $C^{r}$ open sets ($r=1, 2, \dots , \infty $) of symplectic diffeomorphisms and Hamiltonian systems, exhibitinglargerobustly transitive sets. We show that the $C^{\infty }$ closure of such open sets contains a variety of systems, including so-calleda priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call “symplectic blender”.
LA - eng
KW - symplectic blender; robust transitivity; hamiltonian dynamics; instability problem
UR - http://eudml.org/doc/272173
ER -

References

top
  1. [1] F. Abdenur, C. Bonatti & S. Crovisier, Nonuniform hyperbolicity for C 1 -generic diffeomorphisms, Israel J. Math.183 (2011), 1–60. Zbl1246.37040MR2811152
  2. [2] L. Arnold, Random dynamical systems, Springer Monographs in Math., Springer, 1998. Zbl0906.34001MR1723992
  3. [3] V. I. Arnolʼd, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk18 (1963), 91–192. Zbl0135.42701MR170705
  4. [4] V. I. Arnolʼd, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR156 (1964), 9–12. Zbl0135.42602MR163026
  5. [5] V. I. Arnold, V. V. Kozlov & A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, third éd., Encyclopaedia of Math. Sciences 3, Springer, 2006. Zbl1105.70002MR2269239
  6. [6] D. Bernstein & A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invent. Math.88 (1987), 225–241. Zbl0642.58040MR880950
  7. [7] C. Bonatti & L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math.143 (1996), 357–396. Zbl0852.58066MR1381990
  8. [8] C. Bonatti & L. J. Díaz, Robust heterodimensional cycles and C 1 -generic dynamics, J. Inst. Math. Jussieu7 (2008), 469–525. Zbl1156.37004MR2427422
  9. [9] C. Bonatti, L. J. Díaz & E. R. Pujals, A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math.158 (2003), 355–418. Zbl1049.37011MR2018925
  10. [10] C. Bonatti, L. J. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopedia of Mathematical Sciences, Springer, 2004. Zbl1060.37020
  11. [11] K. Burns & A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math.171 (2010), 451–489. Zbl1196.37057MR2630044
  12. [12] C.-Q. Cheng & J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom.67 (2004), 457–517. Zbl1098.37055MR2153027
  13. [13] A. Delshams, M. Gidea, R. de la Llave & T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 285–336. Zbl1144.37022MR2446259
  14. [14] A. Delshams, R. de la Llave & T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc. 179 (2006). Zbl1090.37044
  15. [15] A. Delshams, R. de la Llave & T. M. Seara, Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows, Adv. Math.202 (2006), 64–188. Zbl1091.37018MR2218821
  16. [16] L. J. Díaz, E. R. Pujals & R. Ures, Partial hyperbolicity and robust transitivity, Acta Math.183 (1999), 1–43. Zbl0987.37020MR1719547
  17. [17] R. Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. École Norm. Sup.21 (1988), 1–46. Zbl0656.58020MR944100
  18. [18] F. H. Ghane, A. J. Homburg & A. Sarizadeh, C 1 robustly minimal iterated function systems, Stoch. Dyn.10 (2010), 155–160. Zbl1183.37079MR2604683
  19. [19] M. W. Hirsch, C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. Zbl0355.58009MR501173
  20. [20] V. Horita & A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006), 641–661. Zbl1130.37356MR2259610
  21. [21] V. Kaloshin & M. Levi, An example of Arnold diffusion for near-integrable Hamiltonians, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 409–427. Zbl1141.70009MR2402948
  22. [22] V. Kaloshin, J. N. Mather & E. Valdinoci, Instability of resonant totally elliptic points of symplectic maps in dimension 4, Astérisque297 (2004), 79–116. Zbl1156.37313MR2135676
  23. [23] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.É.S. 51 (1980), 137–173. Zbl0445.58015MR573822
  24. [24] A. Koropecki & M. Nassiri, Transitivity of generic semigroups of area-preserving surface diffeomorphisms, Math. Z. 266 (2010), 707–718; 268 (2011), 601–604. Zbl1215.37019MR2719428
  25. [25] R. Mañé, Contributions to the stability conjecture, Topology17 (1978), 383–396. Zbl0405.58035MR516217
  26. [26] R. Mañé, Ergodic theory and differentiable dynamics, Ergebnisse Math. Grenzgb. 8, Springer, 1987. Zbl0616.28007MR889254
  27. [27] J.-P. Marco & D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. I.H.É.S. 96 (2002), 199–275. Zbl1086.37031MR1986314
  28. [28] J. N. Mather, Arnolʼd diffusion. I. Announcement of results, Sovrem. Mat. Fundam. Napravl. 2 (2003), 116–130; English transl.in J. Math. Sci. 124 (2004), 5275–5289. Zbl1069.37044MR2129140
  29. [29] R. Moeckel, Generic drift on Cantor sets of annuli, in Celestial mechanics (Evanston, IL, 1999), Contemp. Math. 292, Amer. Math. Soc., 2002, 163–171. Zbl1034.70012MR1884898
  30. [30] M. Nassiri, Robustly transitive sets in nearly integrable Hamiltonian systems, Thèse, IMPA, 2006. 
  31. [31] S. E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math.99 (1977), 1061–1087. Zbl0379.58011MR455049
  32. [32] C. Pugh & M. Shub, Stable ergodicity, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 1–41. Zbl1330.37005MR2015448
  33. [33] E. R. Pujals & M. Sambarino, Homoclinic bifurcations, dominated splitting, and robust transitivity, in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 327–378. Zbl1130.37354MR2186244
  34. [34] R. C. Robinson, Generic properties of conservative systems I, II, Amer. J. Math. 92 (1970), 562–603, 897–906. Zbl0212.56601MR273640
  35. [35] R. Saghin & Z. Xia, Partial hyperbolicity or dense elliptic periodic points for C 1 -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc.358 (2006), 5119–5138. Zbl1210.37014MR2231887
  36. [36] M. Shub, Topologically transitive diffeomorphisms of 𝕋 4 , in Symposium on Differential Equations and Dynamical Systems, Springer Lecture Notes 206, 1971, 39–40. 
  37. [37] Z. Xia, Arnold diffusion: a variational construction, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Extra Vol. II, 1998, 867–877. Zbl0910.58015MR1648133
  38. [38] E. Zehnder, Homoclinic points near elliptic fixed points, Comm. Pure Appl. Math.26 (1973), 131–182. Zbl0261.58002MR345134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.