On non-basic Rapoport-Zink spaces

Elena Mantovan

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 5, page 671-716
  • ISSN: 0012-9593

Abstract

top
In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their l -adic cohomology groups provide a realization of certain cases of local Langlands correspondences and in particular to the question of whether they contain any supercuspidal representations. Our results are compatible with this prediction and identify many cases when no supercuspidal representations appear. In those cases, we prove that the l -adic cohomology of the non-basic spaces is equal (in the appropriate sense) to the parabolic induction of the l -adic cohomology of some associated lower-dimensional (and in the most favorable cases basic) Rapoport-Zink spaces. Such an equality was originally conjectured by Harris in [11] (Conjecture 5.2, p. 420).

How to cite

top

Mantovan, Elena. "On non-basic Rapoport-Zink spaces." Annales scientifiques de l'École Normale Supérieure 41.5 (2008): 671-716. <http://eudml.org/doc/272181>.

@article{Mantovan2008,
abstract = {In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their $l$-adic cohomology groups provide a realization of certain cases of local Langlands correspondences and in particular to the question of whether they contain any supercuspidal representations. Our results are compatible with this prediction and identify many cases when no supercuspidal representations appear. In those cases, we prove that the $l$-adic cohomology of the non-basic spaces is equal (in the appropriate sense) to the parabolic induction of the $l$-adic cohomology of some associated lower-dimensional (and in the most favorable cases basic) Rapoport-Zink spaces. Such an equality was originally conjectured by Harris in [11] (Conjecture 5.2, p. 420).},
author = {Mantovan, Elena},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-divisible groups; Rapoport-Zink spaces; Shimura varieties; Langlands correspondences},
language = {eng},
number = {5},
pages = {671-716},
publisher = {Société mathématique de France},
title = {On non-basic Rapoport-Zink spaces},
url = {http://eudml.org/doc/272181},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Mantovan, Elena
TI - On non-basic Rapoport-Zink spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 5
SP - 671
EP - 716
AB - In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their $l$-adic cohomology groups provide a realization of certain cases of local Langlands correspondences and in particular to the question of whether they contain any supercuspidal representations. Our results are compatible with this prediction and identify many cases when no supercuspidal representations appear. In those cases, we prove that the $l$-adic cohomology of the non-basic spaces is equal (in the appropriate sense) to the parabolic induction of the $l$-adic cohomology of some associated lower-dimensional (and in the most favorable cases basic) Rapoport-Zink spaces. Such an equality was originally conjectured by Harris in [11] (Conjecture 5.2, p. 420).
LA - eng
KW - $p$-divisible groups; Rapoport-Zink spaces; Shimura varieties; Langlands correspondences
UR - http://eudml.org/doc/272181
ER -

References

top
  1. [1] V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. I.H.É.S. 78 (1993), 5–161. Zbl0804.32019MR1259429
  2. [2] V. G. Berkovich, Vanishing cycles for formal schemes, Invent. Math.115 (1994), 539–571. Zbl0791.14008MR1262943
  3. [3] V. G. Berkovich, Vanishing cycles for formal schemes. II, Invent. Math. 125 (1996), 367–390. Zbl0852.14002MR1395723
  4. [4] P. Boyer, Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math.138 (1999), 573–629. Zbl1161.11408MR1719811
  5. [5] P. Colmez & J.-M. Fontaine, Construction des représentations p -adiques semi-stables, Invent. Math.140 (2000), 1–43. Zbl1010.14004
  6. [6] M. Demazure, Lectures on p -divisible groups, Lecture Notes in Math. 302, Springer, 1972. Zbl0247.14010MR344261
  7. [7] V. G. Drinfelʼd, Coverings of p -adic symmetric domains, Funkcional. Anal. i Priložen.10 (1976), 29–40. Zbl0346.14010MR422290
  8. [8] L. Fargues, Cohomologie des espaces de modules de groupes p -divisibles et correspondances de Langlands locales, Astérisque291 (2004), 1–199. Zbl1196.11087MR2074714
  9. [9] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3–80. Zbl0429.14016MR563472
  10. [10] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, No. 45 (Été 1970), Presses de l’Univ. Montréal, 1974. Zbl0331.14021MR417192
  11. [11] M. Harris, Local Langlands correspondences and vanishing cycles on Shimura varieties, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, 2001, 407–427. Zbl1025.11038MR1905332
  12. [12] M. Harris & R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies 151, Princeton University Press, 2001. Zbl1036.11027
  13. [13] L. Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque127 (1985), 151–198. Zbl1182.14050MR801922
  14. [14] A. J. d. Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. I.H.É.S. 82 (1995), 5–96. Zbl0864.14009MR1383213
  15. [15] N. M. Katz, Slope filtration of F -crystals, in Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I, Astérisque 63, Soc. Math. France, 1979, 113–163. Zbl0426.14007MR563463
  16. [16] N. M. Katz & B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton University Press, 1985. Zbl0576.14026
  17. [17] R. E. Kottwitz, Isocrystals with additional structure, Compositio Math.56 (1985), 201–220. Zbl0597.20038MR809866
  18. [18] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
  19. [19] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255–339. Zbl0966.20022MR1485921
  20. [20] R. E. Kottwitz, On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not.26 (2003), 1433–1447. Zbl1074.14016MR1976046
  21. [21] J. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), 3–90; Russ. Math. Surveys 18 (1963), 1–80. Zbl0128.15603MR157972
  22. [22] E. Mantovan, On certain unitary group Shimura varieties, Astérisque291 (2004), 201–331. Zbl1062.11036MR2074715
  23. [23] E. Mantovan, On the cohomology of certain PEL-type Shimura varieties, Duke Math. J.129 (2005), 573–610. Zbl1112.11033MR2169874
  24. [24] E. Mantovan & E. Viehmann, On the Hodge-Newton filtration for p -divisible 𝒪 -modules, preprint, arXiv:0710.4194, to appear in Math. Z. Zbl1218.14014
  25. [25] W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math. 264, Springer, 1972. Zbl0243.14013MR347836
  26. [26] B. Moonen, Serre-Tate theory for moduli spaces of PEL type, Ann. Sci. École Norm. Sup.37 (2004), 223–269. Zbl1107.11028MR2061781
  27. [27] D. Mumford, Lectures on curves on an algebraic surface, Annals of Math. Studies, No. 59, Princeton University Press, 1966. Zbl0187.42701MR209285
  28. [28] F. Oort, Newton polygon strata in the moduli space of abelian varieties, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 417–440. Zbl1086.14037MR1827028
  29. [29] F. Oort & T. Zink, Families of p -divisible groups with constant Newton polygon, Doc. Math.7 (2002), 183–201. Zbl1022.14013
  30. [30] M. Rapoport & M. Richartz, On the classification and specialization of F -isocrystals with additional structure, Compositio Math.103 (1996), 153–181. Zbl0874.14008
  31. [31] M. Rapoport & T. Zink, Period spaces for p -divisible groups, Annals of Mathematics Studies 141, Princeton University Press, 1996. Zbl0873.14039
  32. [32] T. Wedhorn, Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. École Norm. Sup.32 (1999), 575–618. Zbl0983.14024MR1710754
  33. [33] T. Zink, On the slope filtration, Duke Math. J.109 (2001), 79–95. Zbl1061.14045MR1844205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.