Generalised Hermite constants, Voronoi theory and heights on flag varieties

Bertrand Meyer

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 1, page 127-158
  • ISSN: 0037-9484

Abstract

top
This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.

How to cite

top

Meyer, Bertrand. "Generalised Hermite constants, Voronoi theory and heights on flag varieties." Bulletin de la Société Mathématique de France 137.1 (2009): 127-158. <http://eudml.org/doc/272326>.

@article{Meyer2009,
abstract = {This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.},
author = {Meyer, Bertrand},
journal = {Bulletin de la Société Mathématique de France},
keywords = {lattices; Humbert forms; Hermite constant; Voronoï theory; flag variety; height},
language = {eng},
number = {1},
pages = {127-158},
publisher = {Société mathématique de France},
title = {Generalised Hermite constants, Voronoi theory and heights on flag varieties},
url = {http://eudml.org/doc/272326},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Meyer, Bertrand
TI - Generalised Hermite constants, Voronoi theory and heights on flag varieties
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 127
EP - 158
AB - This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.
LA - eng
KW - lattices; Humbert forms; Hermite constant; Voronoï theory; flag variety; height
UR - http://eudml.org/doc/272326
ER -

References

top
  1. [1] C. Bavard – « Systole et invariant d’Hermite », Journal für die reine und angewandte Mathematik482 (1997), p. 93–120. Zbl1011.53035MR1427658
  2. [2] —, « Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues », Bulletin de la Société Mathématique de France133 (2005), p. 205–257. Zbl1085.11033MR2172266
  3. [3] A.-M. Bergé & J. Martinet – « Sur un problème de dualité lié aux sphères en géométrie des nombres », Journal of Number Theory32 (1989), p. 14–42. Zbl0677.10022MR1002112
  4. [4] E. Bombieri & W. Gubler – Heights in diophantine geometry, New mathematical monographs, vol. 4, Cambridge University Press, 2006. Zbl1115.11034MR2216774
  5. [5] R. Coulangeon – « Réseaux k -extrêmes », Proceedings of the London Mathematical Society. Third Series73 (1996), p. 555–574. Zbl0861.11040MR1407461
  6. [6] —, « Voronoï theory over algebraic number fields », in Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., 2001, p. 147–162. Zbl1139.11321MR1878749
  7. [7] —, Document de synthèse en vue de l’habilitation à diriger des recherches, Non paru, 2004. 
  8. [8] W. Fulton – Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, 1997. Zbl0878.14034MR1464693
  9. [9] P. Humbert – « Réduction de formes quadratiques dans un corps algébrique fini », Commentarii Mathematici Helvetici23 (1949), p. 50–63. Zbl0034.31102MR31521
  10. [10] M. I. Icaza – « Hermite constant and extreme forms for algebraic number fields », Journal of the London Mathematical Society. Second Series55 (1997), p. 11–22. Zbl0874.11047MR1423282
  11. [11] A. Korkine & G. Zolotareff – « Sur les formes quadratiques », Mathematische Annalen 6 (1873), p. 366–389. MR1509828JFM05.0109.01
  12. [12] J. Martinet – Perfect lattices in Euclidean spaces, Grund. Math. Wiss., vol. 327, Springer, 2003. Zbl1017.11031MR1957723
  13. [13] R. B. McFeat – « Geometry of numbers in adele spaces », Dissertationes Math. Rozprawy Mat. 88 (1971), p. 49. Zbl0229.10014MR318104
  14. [14] S. Ohno & T. Watanabe – « Estimates of Hermite constants for algebraic number fields », Commentarii Mathematici Universitatis Sancti Pauli50 (2001), p. 53–63. Zbl1004.11039MR1839965
  15. [15] V. Platonov & A. Rapinchuk – Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press Inc., 1994. Zbl0841.20046MR1278263
  16. [16] C. Poor & D. S. Yuen – « The Bergé–Martinet constant and slopes of Siegel cusp forms », Bulletin of the London Mathematical Society.38 (2006), p. 913–924. Zbl1104.11039MR2285245
  17. [17] R. A. Rankin – « On positive definite quadratic forms », Journal of the London Mathematical Society. Second Series28 (1953), p. 309–314. Zbl0050.27401MR55380
  18. [18] D. Roy & J. L. Thunder – « An absolute Siegel’s lemma », Journal für die reine und angewandte Mathematik476 (1996), p. 1–26. Zbl0860.11036MR1401695
  19. [19] J. L. Thunder – « Asymptotic estimates for rational points of bounded height on flag varieties », Compositio Mathematica88 (1993), p. 155–186. Zbl0806.11030MR1237919
  20. [20] —, « An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma », Journal für die reine und angewandte Mathematik475 (1996), p. 167–185. Zbl0858.11034MR1396731
  21. [21] —, « Higher-dimensional analogs of Hermite’s constant », The Michigan Mathematical Journal45 (1998), p. 301–314. Zbl1007.11044MR1637658
  22. [22] G. Voronoï – « Nouvelles applications des paramètres continus à la théorie des formes quadratiques », Journal für die reine und angewandte Mathematik133 (1908), p. 97–178. JFM38.0261.01
  23. [23] T. Watanabe – « On an analog of Hermite’s constant », Journal of Lie Theory10 (2000), p. 33–52. Zbl1029.11031MR1747690

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.