Generalised Hermite constants, Voronoi theory and heights on flag varieties
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 1, page 127-158
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMeyer, Bertrand. "Generalised Hermite constants, Voronoi theory and heights on flag varieties." Bulletin de la Société Mathématique de France 137.1 (2009): 127-158. <http://eudml.org/doc/272326>.
@article{Meyer2009,
abstract = {This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.},
author = {Meyer, Bertrand},
journal = {Bulletin de la Société Mathématique de France},
keywords = {lattices; Humbert forms; Hermite constant; Voronoï theory; flag variety; height},
language = {eng},
number = {1},
pages = {127-158},
publisher = {Société mathématique de France},
title = {Generalised Hermite constants, Voronoi theory and heights on flag varieties},
url = {http://eudml.org/doc/272326},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Meyer, Bertrand
TI - Generalised Hermite constants, Voronoi theory and heights on flag varieties
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 127
EP - 158
AB - This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.
LA - eng
KW - lattices; Humbert forms; Hermite constant; Voronoï theory; flag variety; height
UR - http://eudml.org/doc/272326
ER -
References
top- [1] C. Bavard – « Systole et invariant d’Hermite », Journal für die reine und angewandte Mathematik482 (1997), p. 93–120. Zbl1011.53035MR1427658
- [2] —, « Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues », Bulletin de la Société Mathématique de France133 (2005), p. 205–257. Zbl1085.11033MR2172266
- [3] A.-M. Bergé & J. Martinet – « Sur un problème de dualité lié aux sphères en géométrie des nombres », Journal of Number Theory32 (1989), p. 14–42. Zbl0677.10022MR1002112
- [4] E. Bombieri & W. Gubler – Heights in diophantine geometry, New mathematical monographs, vol. 4, Cambridge University Press, 2006. Zbl1115.11034MR2216774
- [5] R. Coulangeon – « Réseaux -extrêmes », Proceedings of the London Mathematical Society. Third Series73 (1996), p. 555–574. Zbl0861.11040MR1407461
- [6] —, « Voronoï theory over algebraic number fields », in Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., 2001, p. 147–162. Zbl1139.11321MR1878749
- [7] —, Document de synthèse en vue de l’habilitation à diriger des recherches, Non paru, 2004.
- [8] W. Fulton – Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, 1997. Zbl0878.14034MR1464693
- [9] P. Humbert – « Réduction de formes quadratiques dans un corps algébrique fini », Commentarii Mathematici Helvetici23 (1949), p. 50–63. Zbl0034.31102MR31521
- [10] M. I. Icaza – « Hermite constant and extreme forms for algebraic number fields », Journal of the London Mathematical Society. Second Series55 (1997), p. 11–22. Zbl0874.11047MR1423282
- [11] A. Korkine & G. Zolotareff – « Sur les formes quadratiques », Mathematische Annalen 6 (1873), p. 366–389. MR1509828JFM05.0109.01
- [12] J. Martinet – Perfect lattices in Euclidean spaces, Grund. Math. Wiss., vol. 327, Springer, 2003. Zbl1017.11031MR1957723
- [13] R. B. McFeat – « Geometry of numbers in adele spaces », Dissertationes Math. Rozprawy Mat. 88 (1971), p. 49. Zbl0229.10014MR318104
- [14] S. Ohno & T. Watanabe – « Estimates of Hermite constants for algebraic number fields », Commentarii Mathematici Universitatis Sancti Pauli50 (2001), p. 53–63. Zbl1004.11039MR1839965
- [15] V. Platonov & A. Rapinchuk – Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press Inc., 1994. Zbl0841.20046MR1278263
- [16] C. Poor & D. S. Yuen – « The Bergé–Martinet constant and slopes of Siegel cusp forms », Bulletin of the London Mathematical Society.38 (2006), p. 913–924. Zbl1104.11039MR2285245
- [17] R. A. Rankin – « On positive definite quadratic forms », Journal of the London Mathematical Society. Second Series28 (1953), p. 309–314. Zbl0050.27401MR55380
- [18] D. Roy & J. L. Thunder – « An absolute Siegel’s lemma », Journal für die reine und angewandte Mathematik476 (1996), p. 1–26. Zbl0860.11036MR1401695
- [19] J. L. Thunder – « Asymptotic estimates for rational points of bounded height on flag varieties », Compositio Mathematica88 (1993), p. 155–186. Zbl0806.11030MR1237919
- [20] —, « An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma », Journal für die reine und angewandte Mathematik475 (1996), p. 167–185. Zbl0858.11034MR1396731
- [21] —, « Higher-dimensional analogs of Hermite’s constant », The Michigan Mathematical Journal45 (1998), p. 301–314. Zbl1007.11044MR1637658
- [22] G. Voronoï – « Nouvelles applications des paramètres continus à la théorie des formes quadratiques », Journal für die reine und angewandte Mathematik133 (1908), p. 97–178. JFM38.0261.01
- [23] T. Watanabe – « On an analog of Hermite’s constant », Journal of Lie Theory10 (2000), p. 33–52. Zbl1029.11031MR1747690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.