Dimension reduction for −Δ1

Maria Emilia Amendola; Giuliano Gargiulo; Elvira Zappale

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 1, page 42-77
  • ISSN: 1292-8119

Abstract

top
A 3D-2D dimension reduction for −Δ1 is obtained. A power law approximation from −Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.

How to cite

top

Amendola, Maria Emilia, Gargiulo, Giuliano, and Zappale, Elvira. "Dimension reduction for −Δ1." ESAIM: Control, Optimisation and Calculus of Variations 20.1 (2014): 42-77. <http://eudml.org/doc/272817>.

@article{Amendola2014,
abstract = {A 3D-2D dimension reduction for −Δ1 is obtained. A power law approximation from −Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.},
author = {Amendola, Maria Emilia, Gargiulo, Giuliano, Zappale, Elvira},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {1–Laplacian; Γ–convergence; least gradient functions; dimension reduction; duality; 1-Laplacian; -convergence},
language = {eng},
number = {1},
pages = {42-77},
publisher = {EDP-Sciences},
title = {Dimension reduction for −Δ1},
url = {http://eudml.org/doc/272817},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Amendola, Maria Emilia
AU - Gargiulo, Giuliano
AU - Zappale, Elvira
TI - Dimension reduction for −Δ1
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 1
SP - 42
EP - 77
AB - A 3D-2D dimension reduction for −Δ1 is obtained. A power law approximation from −Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.
LA - eng
KW - 1–Laplacian; Γ–convergence; least gradient functions; dimension reduction; duality; 1-Laplacian; -convergence
UR - http://eudml.org/doc/272817
ER -

References

top
  1. [1] E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elast.25 (1991) 137–148. Zbl0734.73094MR1111364
  2. [2] L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi–convex integrals. J. Funct. Anal.109 (1992) 76–97. Zbl0769.49009MR1183605
  3. [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). Zbl0957.49001MR1857292
  4. [4] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl1098.46001MR450957
  5. [5] G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl.135 (1983) 293–318. Zbl0572.46023MR750538
  6. [6] A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim.44 (2001) 299–323. Zbl0999.49012MR1851742
  7. [7] J.F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment. J. Math. Pures Appl.90 (2008) 520–549. Zbl1153.49017MR2472892
  8. [8] M. Bocea and V. Nesi, Γ–convergence of power-law functionals, variational principles in L∞, and applications. SIAM J. Math. Anal.39 (2008) 1550–1576. Zbl1166.35300MR2377289
  9. [9] H. Brezis, Analisi Funzionale. Liguori, Napoli (1986). 
  10. [10] G. Dal Maso, An introduction to Γ–convergence. Progress Nonlinear Differ. Equ. Appl. Birkhäuser Boston, Inc., Boston, MA (1983). Zbl0816.49001
  11. [11] R. De Arcangelis and C. Trombetti, On the relaxation of some classes of Dirichlet minimum problems. Commun. Partial Differ. Eqs.24 (1999) 975–1006. Zbl0928.49014MR1680889
  12. [12] E. De Giorgi, G. Letta, Une notion generale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977) 61–99. Zbl0405.28008MR466479
  13. [13] F. Demengel, On Some Nonlinear Partial Differential Equations involving the 1–Laplacian and Critical Sobolev Exponent. ESAIM: COCV 4 (1999) 667–686. Zbl0939.35070MR1746172
  14. [14] F. Demengel, Théorèmes d’existence pour des equations avec l’opérateur 1-Laplacien, première valeur propre pour − Δ1. (French) [Some existence results for partial differential equations involving the 1-Laplacian: first eigenvalue for − Δ1]. C. R. Math. Acad. Sci. Paris 334 (2002) 1071–1076. Zbl1142.35408MR1911649
  15. [15] F. Demengel, Functions locally almost 1–harmonic. Appl. Anal.83 (2004) 865–896. Zbl1135.35333MR2083734
  16. [16] F. Demengel, On some nonlinear equation involving the 1–Laplacian and trace map inequalities. Nonlinear Anal.47 (2002) 1151–1163. Zbl1016.49001MR1880578
  17. [17] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
  18. [18] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,RN) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal.123 (1993) 1–49. Zbl0788.49039MR1218685
  19. [19] M. Giaquinta, G. Modica and J. Soucek, Functionals with linear growth in the Calculus of Variations. Comment. Math. Univ. Carolin.20 (1979) 143–156. Zbl0409.49006MR526154
  20. [20] C. Goffman and J. Serrin, Sublinear functions of Measures and Variational Integrals. Duke Math. J.31 (1964) 159–178. Zbl0123.09804MR162902
  21. [21] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser (1977). Zbl0402.49033MR638362
  22. [22] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, New York, Tokyo, Clarendon Press (1993). Zbl0780.31001MR1207810
  23. [23] P. Juutinen, p–harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54 (2005) 1015–1029. Zbl1100.49025MR2164415
  24. [24] B. Kawhol, Variations on the p–Laplacian, in edited by D. Bonheure, P. Takac. Nonlinear Elliptic Partial Differ. Equ. Contemporary Math. 540 (2011) 35–46. Zbl1241.35109MR2841298
  25. [25] R. Kohn and R. Temam, Dual spaces of Stresses and Strains, with Applications to Hencky Plasticity. Appl. Math. Optim.10 (1983) 1–35. Zbl0532.73039MR701898
  26. [26] H. Le Dret, and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three–dimensional elasticity. J. Math. Pures Appl.74 (1995) 549–578. Zbl0847.73025MR1365259
  27. [27] P. Lindqvist, On the Equation div( | ∇u | p − 2∇u) + λ | u | p − 2u = 0. Proc. Amer. Math. Soc. 109 (1990) 157–164. Zbl0714.35029MR1007505
  28. [28] S. Monsurró and E. Zappale, On the relaxation and homogenization of some classes of variational problems with mixed boundary conditions. Rev. Roum. Math. Pures Appl.51 (2006) 345–363. Zbl1120.49012MR2275828
  29. [29] P. Sternberg, G. Williams and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992) 3560. Zbl0756.49021MR1172906
  30. [30] P. Sternberg and W.P. Ziemer, The Dirichlet problem for functions of least gradient. In Degenerate diffusions (Minneapolis, MN, 1991). In vol. 47 of IMA Vol. Math. Appl. Springer, New York (1993) 197–214. Zbl0818.49024MR1246349
  31. [31] E. Zappale, On the homogenization of Dirichlet Minimum Problems. Ricerche di Matematica LI (2002) 61–92. Zbl1146.35392MR1961839
  32. [32] W.P. Ziemer, Weakly differentiable functions. In vol. 120 of Graduate Texts in Math. Springer, Berlin (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.