Basic principles of mixed Virtual Element Methods

F. Brezzi; Richard S. Falk; L. Donatella Marini

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 4, page 1227-1240
  • ISSN: 0764-583X

Abstract

top
The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n − 1) − Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).

How to cite

top

Brezzi, F., Falk, Richard S., and Donatella Marini, L.. "Basic principles of mixed Virtual Element Methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1227-1240. <http://eudml.org/doc/273108>.

@article{Brezzi2014,
abstract = {The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n − 1) − Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).},
author = {Brezzi, F., Falk, Richard S., Donatella Marini, L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed formulations; virtual elements; polygonal meshes; polyhedral meshes},
language = {eng},
number = {4},
pages = {1227-1240},
publisher = {EDP-Sciences},
title = {Basic principles of mixed Virtual Element Methods},
url = {http://eudml.org/doc/273108},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Brezzi, F.
AU - Falk, Richard S.
AU - Donatella Marini, L.
TI - Basic principles of mixed Virtual Element Methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1227
EP - 1240
AB - The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n − 1) − Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
LA - eng
KW - mixed formulations; virtual elements; polygonal meshes; polyhedral meshes
UR - http://eudml.org/doc/273108
ER -

References

top
  1. [1] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl.66 (2013) 376–391. MR3073346
  2. [2] D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput.71 (2002) 909–922. Zbl0993.65125MR1898739
  3. [3] D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal.42 (2005) 2429–2451. Zbl1086.65105MR2139400
  4. [4] L. Beirão da Veiga, F. Brezzi, A. Cangiani, L.D. Marini, G. Manzini and A. Russo, The basic principles of Virtual Elements Methods. Math. Models Methods Appl. Sci.23 (2013) 199–214. Zbl06144424MR2997471
  5. [5] L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual Elements for linear elasticity problems. SIAM J. Num. Anal.51 (2013) 794–812. Zbl1268.74010MR3033033
  6. [6] L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed Virtual Element Methods in three dimensions. In preparation. Zbl06578834
  7. [7] L. Beirão da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math.113 (2009) 325–356. Zbl1183.65132MR2534128
  8. [8] L. Beirão da Veiga, K. Lipnikov and G. Manzini, Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes. SIAM J. Numer. Anal.49 (2011) 1737–1760. Zbl1242.65215MR2837482
  9. [9] L. Beirão da Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference Method SIAM J. Sci. Comput.31 (2008) 732–760. Zbl1185.65201MR2460797
  10. [10] P. Bochev and J.M. Hyman, Principle of mimetic discretizations of differential operators, Compatible discretizations. In vol. 142 of Proc. of IMA hot topics workshop on compatible discretizations. Edited by D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov. Springer-Verlag (2006). Zbl1110.65103MR2249347
  11. [11] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer-Verlag, New York (2013). Zbl1277.65092MR3097958
  12. [12] S.C. Brenner and R.L. Scott, The mathematical theory of finite element methods. In vol. 15 of Texts Appl. Math. Springer-Verlag, New York (2008). Zbl1135.65042MR2373954
  13. [13] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. Zbl1177.65164MR2512497
  14. [14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  15. [15] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Num. Anal.43 (2005) 1872–1896. Zbl1108.65102MR2192322
  16. [16] F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Meth. Appl. Mech. Engrg.196 (2007) 3682–3692. Zbl1173.76370MR2339994
  17. [17] F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci.15 (2005) 533–1553. Zbl1083.65099MR2168945
  18. [18] F. Brezzi and L.D. Marini, Virtual elements for plate bending problems. Comput. Meth. Appl. Mech. Engrg.253 (2013) 155–462. Zbl1297.74049MR3002804
  19. [19] A. Cangiani, G. Manzini and A. Russo, Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal.47 (2009) 2612–2637. Zbl1204.65128MR2525613
  20. [20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). Zbl0511.65078MR520174
  21. [21] J. Douglas, Jr. and J.E. Roberts, Mixed finite element methods for second order elliptic problems. Math. Appl. Comput.1 (1982) 91–103. Zbl0482.65057MR667620
  22. [22] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS) 20 (2010) 265–295. Zbl1191.65142MR2649153
  23. [23] C.A. Felippa, Supernatural QUAD4: A template formulation Comput. Methods Appl. Mech. Engrg.195 (2006) 5316–5342. Zbl1120.74049MR2243313
  24. [24] T.-P. Fries and T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications Int, J. Numer. Meth. Engng.84 (2010) 253–304. Zbl1202.74169MR2732652
  25. [25] A. Gain and G.H. Paulino, Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct. Multidiscip. Optim. (2012) 4632–7342. Zbl1274.74332MR2969787
  26. [26] V. Gyrya and K. Lipnikov, High-order mimetic finite difference method for diffusion problems on polygonal meshes. J. Comput. Phys.227 (2008) 8841–8854. Zbl1152.65101MR2459538
  27. [27] J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal.36 (1999) 788–818. Zbl0972.65077MR1681037
  28. [28] Yu. Kuznetsov and S. Repin, New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model.18 (2003) 261–278. Zbl1048.65113MR1997159
  29. [29] S. Rjasanow and S. Weißer, Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal.50 (2012) 2357–2378. Zbl1264.65196MR3022222
  30. [30] A. Tabarraei and N. Sukumar, Conforming polygonal finite elements. Int. J. Numer. Meth. Engrg.61 (2004) 2045–2066. Zbl1073.65563MR2101599
  31. [31] A. Tabarraei and N. Sukumar, Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Engrg.197 (2007) 425–438. Zbl1169.74634MR2362382
  32. [32] C. Talischi, G.H. Paulino and C.H. Le, Honeycomb Wachspress finite elements for structural topology optimization. Struct. Multidiscip. Optim.37 (2009) 569–583. Zbl1274.74452MR2471018
  33. [33] E. Wachspress, A rational Finite Element Basis. Academic Press, New York (1975). Zbl0322.65001MR426460

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.