Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation

Clément Mouhot; Lorenzo Pareschi; Thomas Rey

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 5, page 1515-1531
  • ISSN: 0764-583X

Abstract

top
Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.

How to cite

top

Mouhot, Clément, Pareschi, Lorenzo, and Rey, Thomas. "Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.5 (2013): 1515-1531. <http://eudml.org/doc/273302>.

@article{Mouhot2013,
abstract = {Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.},
author = {Mouhot, Clément, Pareschi, Lorenzo, Rey, Thomas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Boltzmann equation; discrete-velocity approximations; discrete-velocity methods; fast summation methods; farey series; convolutive decomposition; Farey series},
language = {eng},
number = {5},
pages = {1515-1531},
publisher = {EDP-Sciences},
title = {Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation},
url = {http://eudml.org/doc/273302},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Mouhot, Clément
AU - Pareschi, Lorenzo
AU - Rey, Thomas
TI - Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 5
SP - 1515
EP - 1531
AB - Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.
LA - eng
KW - Boltzmann equation; discrete-velocity approximations; discrete-velocity methods; fast summation methods; farey series; convolutive decomposition; Farey series
UR - http://eudml.org/doc/273302
ER -

References

top
  1. [1] A. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B Fluids16 (1997) 293–306. Zbl0881.76061MR1439069
  2. [2] A.V. Bobylev, Exact solutions of the Boltzmann equation. Dokl. Akad. Nauk SSSR225 (1975) 1296–1299. Zbl0361.76082MR398380
  3. [3] A.V. Bobylev, A. Palczewski and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math.320 (1995) 639–644. Zbl0834.76078MR1322351
  4. [4] A.V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B Fluids18 (1999) 869–887. Zbl0965.76059MR1728639
  5. [5] A.V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast fourier transform. Trans. Theory Statist. Phys.29 (2000) 289–310. Zbl1017.82042MR1770434
  6. [6] A.V. Bobylev and M.C. Vinerean, Construction of discrete kinetic models with given invariants. J. Statist. Phys.132 (2008) 153–170. Zbl1214.82087MR2407374
  7. [7] C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. Trans. Theory Statist. Phys.25 (1996) 33–60. Zbl0857.76079MR1380030
  8. [8] H. Cabannes, R. Gatignol and L.-S. Luo, The Discrete Boltzmann Equation (Theory and Applications). University of California, College of engineering, Los-Angeles (2003). MR2012006
  9. [9] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics. Springer Series in Computational Physics. Springer-Verlag, New York (1988). Zbl0717.76004MR917480
  10. [10] T. Carleman, Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math.60 (1933) 91–146. Zbl0006.40002MR1555365JFM59.0404.02
  11. [11] C. Cercignani, Theory and application of the Boltzmann equation. Elsevier, New York (1975). Zbl0403.76065MR406273
  12. [12] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases, in vol. 106 of Appl. Math. Sci. Springer-Verlag, New York (1994). Zbl0813.76001MR1307620
  13. [13] J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput.19 (1965) 297–301. Zbl0127.09002MR178586
  14. [14] F. Coquel, F. Rogier and J. Schneider, A deterministic method for solving the homogeneous Boltzmann equation. Rech. Aérospat.3 (1992) 1–10. Zbl0747.65098MR1192070
  15. [15] F. Filbet, J.W. Hu and S. Jin, A numerical scheme for the quantum Boltzmann equation efficient in the fluid regime. ESAIM: M2AN 42 (2012) 443–463. Zbl1277.82046
  16. [16] F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Amer. Math. Soc.363 (2011) 1947–1980. Zbl1213.82069MR2746671
  17. [17] F. Filbet, C. Mouhot and L. Pareschi, Solving the Boltzmann equation in N log2N. SIAM J. Sci. Comput. 28 (2006) 1029. Zbl1174.82012MR2240802
  18. [18] I. Gamba and S.H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys.228 (2009) 2012–2036. Zbl1159.82320MR2500671
  19. [19] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, sixth ed. Oxford University Press, Oxford (2008). Revised by D.R. Heath-Brown and J.H. Silverman, with a foreword by Andrew Wiles. Zbl1159.11001MR2445243
  20. [20] J. Hu and L. Ying, A fast spectral algorithm for the quantum Boltzmann collision operator, to appear in CMS. Preprint (2011). Zbl1260.82068MR2911206
  21. [21] I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid. Comput.69 (2002) 163–186. Zbl1010.82036MR1954793
  22. [22] P. Kowalczyk, A. Palczewski, G. Russo and Z. Walenta, Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. B Fluids27 (2008) 62–74. Zbl1129.76040MR2378496
  23. [23] M. Krook and T.T. Wu, Exact solutions of the Boltzmann equation. Phys. Fluids 20 (1977) 1589. Zbl0369.76075
  24. [24] P. Markowich and L. Pareschi, Fast, conservative and entropic numerical methods for the Boson Boltzmann equation. Numer. Math.99 (2005) 509–532. Zbl1204.82031MR2117737
  25. [25] Y.-L. Martin, F. Rogier and J. Schneider, Une méthode déterministe pour la résolution de l’équation de Boltzmann inhomogène. C. R. Acad. Sci. Paris Sér. I Math.314 (1992) 483–487. Zbl0747.65098MR1154392
  26. [26] P. Michel and J. Schneider, Approximation simultanée de réels par des nombres rationnels et noyau de collision de l’équation de Boltzmann. C. R. Acad. Sci. Sér. I Math.330 (2000) 857–862. Zbl0960.65145MR1769961
  27. [27] C. Mouhot and L. Pareschi, Fast methods for the Boltzmann collision integral. C. R. Acad. Sci. Paris Sér. I Math.339 (2004) 71–76. Zbl1054.76067MR2075236
  28. [28] C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator. Math. Comput.75 (2006) 1833–1852. Zbl1105.76043MR2240637
  29. [29] A. Nogueira and B. Sevennec, Multidimensional Farey partitions. Indag. Math. (N.S.) 17 (2006) 437–456. Zbl1142.11006MR2321111
  30. [30] V.A. Panferov and A.G. Heintz, A new consistent discret-velocity model for the Boltzmann equation. Math. Models Methods Appl. Sci.25 (2002) 571–593. Zbl0997.82036MR1895119
  31. [31] L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations. In Proc. of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), Trans. Theory Statist. Phys. 25 (1996) 369–382. Zbl0870.76074MR1407541
  32. [32] L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (2000) 1217–1245. Zbl1049.76055MR1756425
  33. [33] L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation. In Proc. of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI 1998). Trans. Theory Statist. Phys. 29 (2000) 431–447. Zbl1019.82016MR1770438
  34. [34] T. Płatkowski and R. Illner, Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev.30 (1988) 213–255. Zbl0668.76087MR941111
  35. [35] T. Platkowski and W. Walús, An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator. Comput. Math. Appl.39 (2000) 151–163. Zbl0949.65141MR1742479
  36. [36] F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation. Trans. Theory Statist. Phys.23 (1994) 313–338. Zbl0811.76050MR1257657
  37. [37] D. Valougeorgis and S. Naris, Acceleration schemes of the discrete velocity method: Gaseous flows in rectangular microchannels. SIAM J. Sci. Comput.25 (2003) 534–552. Zbl1163.65302MR2058074
  38. [38] C. Villani, A review of mathematical topics in collisional kinetic theory. Elsevier Science (2002). Zbl1170.82369MR1942465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.