Design of spline-based self-tuners

Miroslav Kárný; Ivan Nagy; Josef Böhm; Alena Halousková

Kybernetika (1990)

  • Volume: 26, Issue: 1, page 17-30
  • ISSN: 0023-5954

How to cite

top

Kárný, Miroslav, et al. "Design of spline-based self-tuners." Kybernetika 26.1 (1990): 17-30. <http://eudml.org/doc/27376>.

@article{Kárný1990,
author = {Kárný, Miroslav, Nagy, Ivan, Böhm, Josef, Halousková, Alena},
journal = {Kybernetika},
keywords = {implementable self-tuning controllers; simultaneous approximation; splines; regression model; recursive least-squares; continuous-time},
language = {eng},
number = {1},
pages = {17-30},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Design of spline-based self-tuners},
url = {http://eudml.org/doc/27376},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Kárný, Miroslav
AU - Nagy, Ivan
AU - Böhm, Josef
AU - Halousková, Alena
TI - Design of spline-based self-tuners
JO - Kybernetika
PY - 1990
PB - Institute of Information Theory and Automation AS CR
VL - 26
IS - 1
SP - 17
EP - 30
LA - eng
KW - implementable self-tuning controllers; simultaneous approximation; splines; regression model; recursive least-squares; continuous-time
UR - http://eudml.org/doc/27376
ER -

References

top
  1. G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic Press, New York 1977. (1977) Zbl0372.93001MR0453090
  2. J. Böhm, M. Karny, Self-tuning regulators with restricted inputs, Kybernetika 18 (1982), 6, 529-544. (1982) 
  3. J. Böhm, LQ self-tuners with signal level constraints, 7th Symp. Identification and Parameter Estimation, York, UK, preprints 1 (1985), 131 - 137. (1985) 
  4. Ching-Tien, C. Yi-Shyong, Piecewise linear polynomial functions and applications to an analysis and parameter identification, Internat. J. Systems Sci. 75(1987), 10, 1919-1929. (1987) MR0913384
  5. L. Ching-Tien, C. Yi-Shyong, Operational matrices of piecewise linear polynomial functions with application to linear time-varying systems, Internat. J. Systems Sci. 18 (1987), 10, 1931-1942. (1987) Zbl0626.93041MR0913384
  6. P. J. Gawthrop, Continuous-time self-tuning control, A unified approach. In: Proc. of 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing, Lund, Sweden (1986), 19-24. (1986) 
  7. G. C. Goodwin, Some observations on robust estimation and control, 7th Symp. Identification and Parameter Estimation, York, UK, preprints 1 (1985), 851 - 859. (1985) 
  8. M. Kárný, Algorithms for determining the model structure of a controlled system, Kyber- netika 19 (1973), 2, 164-178. (1973) 
  9. M. Kárný, Quantification of prior knowledge about global characteristics of linear normal model, Kybernetika 20 (1984), 5, 376-385. (1984) MR0776327
  10. M. Kárný A. Halousková J. Bohm R. Kulhavý, P. Nedoma, Design of linear quadratic adaptive control: Theory and algorithms for practice, Supplement to Kybernetika 21 (1985), No. 3-6. (1985) 
  11. M. Kárnž A. Halousková, I. Nagy, Modelling, identification and adaptive control of cross-direction basis weight of paper sheets, Internat. Conf. CONTROL 88, Oxford 1988, 159-164. (1988) 
  12. M. Kárný, R. Kulhavý, Structure determination of regression-type models for adaptive prediction and control, In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988. (1988) 
  13. N. P. Korneichuk, Splines in the Approximation Theory (in Russian), Nauka, Moscow 1984. (1984) MR0758443
  14. R. Kulhavý, Restricted exponential forgetting in real-time identification, Automatica 23 (1987), 5, 598-600. (1987) MR0912352
  15. V. Peterka, Bayesian system identification, In: Trends and Progress in System Identification (P. Eykhoff,ed.),Pergamon Press, Oxford 1981, 239-304. (1981) Zbl0451.93059MR0746139
  16. V. Peterka, Algorithms for LQG self-tuning control, In: Proc. of 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing Lund, 1986, Sweden, 13-18. (1986) 
  17. J. Richalet, Why predictive control?, 10th IFAC World Congress on Automatic Control 1987, preprint vol. 11. 7. (1987) 
  18. R. Kohn, C. F. Ansley, Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation, In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988. (1988) Zbl0714.62085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.