Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation

Nastasiya F. Grinberg

ESAIM: Probability and Statistics (2013)

  • Volume: 17, page 293-306
  • ISSN: 1292-8100

Abstract

top
In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for X ˜ = X + ϵ B x10ff65; X = X + ϵB ,ϵ > 0, where B is a standard Brownian motion, and then pass to the limit as ϵ → 0, using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.

How to cite

top

Grinberg, Nastasiya F.. "Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation." ESAIM: Probability and Statistics 17 (2013): 293-306. <http://eudml.org/doc/274387>.

@article{Grinberg2013,
abstract = {In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient $$ ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for $\widetilde\{X\}=X+\epsilon B$ x10ff65; X = X + ϵB ,ϵ &gt; 0, where B is a standard Brownian motion, and then pass to the limit as ϵ → 0, using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.},
author = {Grinberg, Nastasiya F.},
journal = {ESAIM: Probability and Statistics},
keywords = {Itô’s lemma; continuous semimartingales; convex functions; semimartingales; Itō’s lemma; Brownian perturbation},
language = {eng},
pages = {293-306},
publisher = {EDP-Sciences},
title = {Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation},
url = {http://eudml.org/doc/274387},
volume = {17},
year = {2013},
}

TY - JOUR
AU - Grinberg, Nastasiya F.
TI - Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 293
EP - 306
AB - In this note we prove that the local martingale part of a convex function f of a d-dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral ∫H(X)dM, where H(x) is some particular measurable choice of subgradient $$ ∇ f ( x ) off at x, and M is the martingale part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result for $\widetilde{X}=X+\epsilon B$ x10ff65; X = X + ϵB ,ϵ &gt; 0, where B is a standard Brownian motion, and then pass to the limit as ϵ → 0, using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.
LA - eng
KW - Itô’s lemma; continuous semimartingales; convex functions; semimartingales; Itō’s lemma; Brownian perturbation
UR - http://eudml.org/doc/274387
ER -

References

top
  1. [1] M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193. Zbl0703.60041MR1071540
  2. [2] N. Bouleau, Semi-martingales à valeurs Rd et fonctions convexes. C. R. Acad. Sci. Paris Sér. I Math.292 (1981) 87–90. Zbl0458.60072MR610155
  3. [3] N. Bouleau, Formules de changement de variables. Ann. Inst. Henri Poincaré Probab. Statist.20 (1984) 133–145. Zbl0538.60057MR749620
  4. [4] E. Carlen and P. Protter, On semimartingale decompositions of convex functions of semimartingales. Illinois J. Math.36 (1992) 420–427. Zbl0741.60035MR1161975
  5. [5] M. Cranston, W.S. Kendall and P. March, The radial part of Brownian motion. II. Its life and times on the cut locus. Probab. Theory Relat. Fields 96 (1993) 353–368. Zbl0791.58109MR1231929
  6. [6] H. Föllmer and P. Protter, On Itô’s formula for multidimensional Brownian motion. Probab. Theory Relat. Fields116 (2000) 1–20. Zbl0955.60077MR1736587
  7. [7] H. Föllmer, P. Protter and A.N. Shiryayev, Quadratic covariation and an extension of Itô’s formula. Bernoulli1 (1995) 149–169. Zbl0851.60048MR1354459
  8. [8] M. Fuhrman and G. Tessitore, Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim.51 (2005) 279–332. Zbl1101.60046MR2148927
  9. [9] J.R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes Math., vol. 58. Pitman (Advanced Publishing Program), Boston, Mass (1982). Zbl0486.46001MR650456
  10. [10] W.S. Kendall, The radial part of Brownian motion on a manifold: a semimartingale property. Ann. Probab.15 (1987) 1491–1500. Zbl0647.60086MR905343
  11. [11] P.-A. Meyer, Un cours sur les intégrales stochastiques. In Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes Math., vol. 511. Springer, Berlin (1976) 245–400. Zbl0374.60070MR501332
  12. [12] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3th edition. Springer-Verlag, Berlin (1999). Zbl0917.60006MR1725357
  13. [13] R.T. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). Zbl0932.90001MR274683
  14. [14] F. Russo and P. Vallois, The generalized covariation process and Itô formula. Stochastic Process. Appl.59 (1995) 81–104. Zbl0840.60052MR1350257
  15. [15] F. Russo and P. Vallois, Itô formula for C1-functions of semimartingales. Probab. Theory Relat. Fields104 (1996) 27–41. Zbl0838.60045MR1367665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.