The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Long time dynamics for the one dimensional non linear Schrödinger equation

Nicolas Burq[1]; Laurent Thomann[2]; Nikolay Tzvetkov[3]

  • [1] Laboratoire de Mathématiques, Bât. 425, Université Paris Sud, 91405 Orsay Cedex, France.
  • [2] Laboratoire de Mathématiques J. Leray, Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière, 44322 Nantes Cedex 03, France.
  • [3] University of Cergy-Pontoise, UMR CNRS 8088, F-95000, Cergy-Pontoise, France.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2137-2198
  • ISSN: 0373-0956

Abstract

top
In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the L 2 critical and super-critical NLS (without harmonic potential).

How to cite

top

Burq, Nicolas, Thomann, Laurent, and Tzvetkov, Nikolay. "Long time dynamics for the one dimensional non linear Schrödinger equation." Annales de l’institut Fourier 63.6 (2013): 2137-2198. <http://eudml.org/doc/275635>.

@article{Burq2013,
abstract = {In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the $L^2$ critical and super-critical NLS (without harmonic potential).},
affiliation = {Laboratoire de Mathématiques, Bât. 425, Université Paris Sud, 91405 Orsay Cedex, France.; Laboratoire de Mathématiques J. Leray, Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière, 44322 Nantes Cedex 03, France.; University of Cergy-Pontoise, UMR CNRS 8088, F-95000, Cergy-Pontoise, France.},
author = {Burq, Nicolas, Thomann, Laurent, Tzvetkov, Nikolay},
journal = {Annales de l’institut Fourier},
keywords = {Nonlinear Schrödinger equation; potential; random data; Gibbs measure; invariant measure; global solutions; nonlinear Schrödinger equation},
language = {eng},
number = {6},
pages = {2137-2198},
publisher = {Association des Annales de l’institut Fourier},
title = {Long time dynamics for the one dimensional non linear Schrödinger equation},
url = {http://eudml.org/doc/275635},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Burq, Nicolas
AU - Thomann, Laurent
AU - Tzvetkov, Nikolay
TI - Long time dynamics for the one dimensional non linear Schrödinger equation
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2137
EP - 2198
AB - In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the $L^2$ critical and super-critical NLS (without harmonic potential).
LA - eng
KW - Nonlinear Schrödinger equation; potential; random data; Gibbs measure; invariant measure; global solutions; nonlinear Schrödinger equation
UR - http://eudml.org/doc/275635
ER -

References

top
  1. Antoine Ayache, Nikolay Tzvetkov, L p properties for Gaussian random series, Trans. Amer. Math. Soc. 360 (2008), 4425-4439 Zbl1145.60019MR2395179
  2. David Betounes, Differential equations: theory and applications, (2010), Springer, New York Zbl1192.34001MR2571569
  3. Jean-Marc Bouclet, Distributions spectrales pour des opérateurs perturbés, (2000) 
  4. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26 Zbl0822.35126MR1309539
  5. Jean Bourgain, Invariant measures for the 2 D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), 421-445 Zbl0852.35131MR1374420
  6. Nicolas Burq, Patrick Gérard, Nikolay Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 (2005), 255-301 Zbl1116.35109MR2144988
  7. Nicolas Burq, Nikolay Tzvetkov, Invariant measure for a three dimensional nonlinear wave equation, Int. Math. Res. Not. IMRN (2007) Zbl1134.35076MR2376217
  8. Nicolas Burq, Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 (2008), 449-475 Zbl1156.35062MR2425133
  9. Nicolas Burq, Nikolay Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math. 173 (2008), 477-496 Zbl1187.35233MR2425134
  10. Rémi Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci. 12 (2002), 1513-1523 Zbl1029.35208MR1933935
  11. Rémi Carles, Rotating points for the conformal NLS scattering operator, Dyn. Partial Differ. Equ. 6 (2009), 35-51 Zbl1191.35270MR2517827
  12. Rémi Carles, Nonlinear Schrödinger equation with time dependent potential. 9 (2011), no. 4, 937–964., Commun. Math. Sci. 9 (2011), 937-964 Zbl1285.35105MR2901811
  13. Thierry Cazenave, Semilinear Schrödinger equations, 10 (2003), New York University Courant Institute of Mathematical Sciences, New York Zbl1055.35003
  14. Michael Christ, Terry Colliander, Ill-posedness for nonlinear Schrödinger and wave equations, (2011) 
  15. Jim Colliander, Tadahiro Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L 2 ( 𝕋 ) , Duke Math. Journal 161 (2012), 367-414 Zbl1260.35199MR2881226
  16. Benjamin Dodson, Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 1  Zbl1236.35163
  17. Jacek Dziubański, Paweł Głowacki, Sobolev spaces related to Schrödinger operators with polynomial potentials, Math. Z. 262 (2009), 881-894 Zbl1177.47055
  18. Reika Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dynam. Systems 7 (2001), 525-544 Zbl0992.35094MR1815766
  19. J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 309-327 Zbl0586.35042MR801582
  20. Lars Hörmander, The analysis of linear partial differential operators. III, 274 (1985), Springer-Verlag, Berlin Zbl0601.35001MR781536
  21. Rowan Killip, Terence Tao, Monica Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), 1203-1258 Zbl1187.35237MR2557134
  22. Herbert Koch, Daniel Tataru, L p eigenfunction bounds for the Hermite operator, Duke Math. J. 128 (2005), 369-392 Zbl1075.35020MR2140267
  23. Joel L. Lebowitz, Harvey A. Rose, Eugene R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657-687 Zbl1084.82506MR939505
  24. Kenji Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2 , J. Funct. Anal. 169 (1999), 201-225 Zbl0942.35159MR1726753
  25. Ulrich Niederer, The maximal kinematical invariance groups of the harmonic oscillator, Helv. Phys. Acta 46 (1973), 191-200 
  26. Tadahiro Oh, Invariant Gibbs measures and a.s. global well posedness for coupled KdV systems, Differential Integral Equations 22 (2009), 637-668 Zbl1240.35477MR2532115
  27. Tadahiro Oh, Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system, SIAM J. Math. Anal. 41 (2009/10), 2207-2225 Zbl1205.35268MR2579711
  28. Yong-Geun Oh, Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials, J. Differential Equations 81 (1989), 255-274 Zbl0703.35158MR1016082
  29. Alberto Parmeggiani, Spectral theory of non-commutative harmonic oscillators: an introduction, 1992 (2010), Springer-Verlag, Berlin Zbl1200.35346MR2650633
  30. Didier Robert, Autour de l’approximation semi-classique, 68 (1987), Birkhäuser Boston Inc., Boston, MA Zbl0621.35001MR897108
  31. A. V. Rybin, G. G. Varzugin, M. Lindberg, J. Timonen, R. K. Bullough, Similarity solutions and collapse in the attractive Gross-Pitaevskii equation, Phys. Rev. E (3) 62 (2000), 6224-6228 MR1796440
  32. Terence Tao, Nonlinear dispersive equations, 106 (2006), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1106.35001MR2233925
  33. Terence Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math. 15 (2009), 265-282 Zbl1184.35296MR2530148
  34. Laurent Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 2385-2402 Zbl1180.35491MR2569900
  35. Laurent Thomann, A remark on the Schrödinger smoothing effect, Asymptot. Anal. 69 (2010), 117-123 Zbl1208.35026MR2732195
  36. N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), 481-514 Zbl1188.35183MR2574736
  37. Nikolay Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ. 3 (2006), 111-160 Zbl1142.35090MR2227040
  38. Nikolay Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble) 58 (2008), 2543-2604 Zbl1171.35116MR2498359
  39. Kenji Yajima, Guoping Zhang, Smoothing property for Schrödinger equations with potential superquadratic at infinity, Comm. Math. Phys. 221 (2001), 573-590 Zbl1102.35320MR1852054
  40. Kenji Yajima, Guoping Zhang, Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, Sūrikaisekikenkyūsho Kōkyūroku (2002), 183-204 Zbl1060.35121MR1927174
  41. Jian Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations 30 (2005), 1429-1443 Zbl1081.35109MR2182299
  42. Peter E. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, 1756 (2001), Springer-Verlag, Berlin Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.