The resolution of the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman[1]; Igor Rodnianski[1]; Jérémie Szeftel[2]

  • [1] Department of Mathematics Princeton University Princeton NJ 08544
  • [2] Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 75005

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • Volume: 202, Issue: 1, page 1-18
  • ISSN: 2266-0607

Abstract

top
This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

How to cite

top

Klainerman, Sergiu, Rodnianski, Igor, and Szeftel, Jérémie. "The resolution of the bounded $L^2$ curvature conjecture in general relativity." Séminaire Laurent Schwartz — EDP et applications 202.1 (2014-2015): 1-18. <http://eudml.org/doc/275694>.

@article{Klainerman2014-2015,
abstract = {This paper reports on the recent proof of the bounded $L^2$ curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the $L^2$-norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.},
affiliation = {Department of Mathematics Princeton University Princeton NJ 08544; Department of Mathematics Princeton University Princeton NJ 08544; Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 75005},
author = {Klainerman, Sergiu, Rodnianski, Igor, Szeftel, Jérémie},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The resolution of the bounded $L^2$ curvature conjecture in general relativity},
url = {http://eudml.org/doc/275694},
volume = {202},
year = {2014-2015},
}

TY - JOUR
AU - Klainerman, Sergiu
AU - Rodnianski, Igor
AU - Szeftel, Jérémie
TI - The resolution of the bounded $L^2$ curvature conjecture in general relativity
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 202
IS - 1
SP - 1
EP - 18
AB - This paper reports on the recent proof of the bounded $L^2$ curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the $L^2$-norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
LA - eng
KW - Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity
UR - http://eudml.org/doc/275694
ER -

References

top
  1. H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et estimation de Strichartz, Amer. J. Math., 121, 1337–1777, 1999. Zbl0952.35073MR1719798
  2. H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif, IMRN, 21, 1141–1178, 1999. Zbl0938.35106MR1728676
  3. Y. C. Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225, 1952. Zbl0049.19201MR53338
  4. E. Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174, 593–595, 1922. Zbl48.0854.02
  5. D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Comm. Pure and Appl. Math, 46, 1131–1220, 1993. Zbl0853.35122MR1225895
  6. D. Christodoulou, The instability of naked singularities in the gravitational collapse of a scalar field, Ann. of Math., 149, 183–217,1999. Zbl1126.83305MR1680551
  7. A. Fischer, J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Comm. Math. Phys. 28, 1–38, 1972. Zbl0247.35082MR309507
  8. T. J. R. Hughes, T. Kato, J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63, 273–394, 1977. Zbl0361.35046MR420024
  9. S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Communications on Pure and Applied Mathematics, 46, 1221–1268, 1993. Zbl0803.35095MR1231427
  10. S. Klainerman, M. Machedon, Finite energy solutions of the Maxwell-Klein-Gordon equations, Duke Math. J. 74, 19–44, 1994. Zbl0818.35123MR1271462
  11. S. Klainerman, M. Machedon, Finite Energy Solutions for the Yang-Mills Equations in 1 + 3 , Annals of Math. 142, 39–119, 1995. Zbl0827.53056MR1338675
  12. S. Klainerman, PDE as a unified subject, Proceeding of Visions in Mathematics, GAFA 2000 (Tel Aviv 1999). Geom Funct. Anal. 2000, Special Volume , Part 1, 279–315. Zbl1002.35002MR1826256
  13. S. Klainerman, I. Rodnianski, Improved local well-posedness for quasi-linear wave equations in dimension three, Duke Math. J. 117 (1), 1–124, 2003. Zbl1031.35091MR1962783
  14. S. Klainerman, I. Rodnianski, Rough solutions to the Einstein vacuum equations, Annals of Math. 161, 1143–1193, 2005. Zbl1089.83006MR2180400
  15. S. Klainerman, I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2), 279–291, 2005. Zbl1284.58018MR2151111
  16. S. Klainerman, I. Rodnianski, Casual geometry of Einstein vacuum space-times with finite curvature flux, Inventiones159, 437–529, 2005. Zbl1136.58018MR2125732
  17. S. Klainerman, I. Rodnianski, Sharp trace theorems on null hypersurfaces, GAFA 16 (1), 164–229, 2006. Zbl1206.35081MR2221255
  18. S. Klainerman, I. Rodnianski, A geometric version of Littlewood-Paley theory, GAFA 16 (1), 126–163, 2006. Zbl1206.35080MR2221254
  19. S. Klainerman, I. Rodnianski, On a break-down criterion in General Relativity, J. Amer. Math. Soc. 23, 345–382, 2010. Zbl1203.35084MR2601037
  20. S. Klainerman, I. Rodnianski, J. Szeftel, The Bounded L 2 Curvature Conjecture, http://arxiv.org/abs/1204.1767, 91 p, 2012. Zbl1330.53089
  21. J. Krieger, W. Schlag, Concentration compactness for critical wave maps, Monographs of the European Mathematical Society, 2012. Zbl06004782MR2895939
  22. H. Lindblad, Counterexamples to local existence for quasilinear wave equations, Amer. J. Math. 118 (1), 1–16, 1996. Zbl0855.35080MR1375301
  23. H. Lindblad, I. Rodnianski, The weak null condition for the Einstein vacuum equations, C. R. Acad. Sci. 336, 901–906, 2003. Zbl1045.35101MR1994592
  24. D. Parlongue, An integral breakdown criterion for Einstein vacuum equations in the case of asymptotically flat spacetimes, eprint1004.4309, 88 p, 2010. 
  25. F. Planchon, I. Rodnianski, Uniqueness in general relativity, preprint. 
  26. G. Ponce, T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. PDE 17, 169–177, 1993. Zbl0803.35096MR1211729
  27. H. F. Smith, A parametrix construction for wave equations with C 1 , 1 coefficients, Ann. Inst. Fourier (Grenoble) 48, 797–835, 1998. Zbl0974.35068MR1644105
  28. H.F. Smith, D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. 162, 291–366, 2005. Zbl1098.35113MR2178963
  29. S. Sobolev, Méthodes nouvelles pour résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Matematicheskii Sbornik, 1 (43), 31–79, 1936. Zbl0014.05902
  30. E. Stein, Harmonic Analysis, Princeton University Press, 1993. Zbl0821.42001MR1232192
  31. J. Sterbenz, D. Tataru, Regularity of Wave-Maps in dimension 2 + 1 , Comm. Math. Phys. 298 (1), 231–264, 2010. Zbl1218.35057MR2657818
  32. J. Sterbenz, D. Tataru, Energy dispersed large data wave maps in 2 + 1 dimensions, Comm. Math. Phys. 298 (1), 139–230, 2010. Zbl1218.35129MR2657817
  33. J. Szeftel, Parametrix for wave equations on a rough background I: Regularity of the phase at initial time, http://arxiv.org/abs/1204.1768, 145 p, 2012. 
  34. J. Szeftel, Parametrix for wave equations on a rough background II: Construction of the parametrix and control at initial time, http://arxiv.org/abs/1204.1769, 84 p, 2012. 
  35. J. Szeftel, Parametrix for wave equations on a rough background III: Space-time regularity of the phase, http://arxiv.org/abs/1204.1770, 276 p, 2012. 
  36. J. Szeftel, Parametrix for wave equations on a rough background IV: Control of the error term, http://arxiv.org/abs/1204.1771, 284 p, 2012. 
  37. J. Szeftel, Sharp Strichartz estimates for the wave equation on a rough background, http://arxiv.org/abs/1301.0112, 30 p, 2013. 
  38. T. Tao, Global regularity of wave maps I–VII, preprints. 
  39. D. Tataru, Local and global results for Wave Maps I, Comm. PDE 23, 1781–1793, 1998. Zbl0914.35083MR1641721
  40. D. Tataru. Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation, Amer. J. Math. 122, 349–376, 2000. Zbl0959.35125MR1749052
  41. D. Tataru, Strichartz estimates for second order hyperbolic operators with non smooth coefficients, J.A.M.S. 15 (2), 419–442, 2002. Zbl0990.35027MR1887639
  42. Q. Wang, Improved breakdown criterion for Einstein vacuum equation in CMC gauge, Comm. Pure Appl. Math. 65 (1), 21–76, 2012. Zbl1248.83009MR2846637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.