Equations for Mahler measure and isogenies
- [1] Département de mathématiques et de statistique Université de Montréal. CP 6128, succ. Centre-ville. Montreal, QC H3C 3J7, Canada
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 387-399
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLalín, Matilde N.. "Equations for Mahler measure and isogenies." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 387-399. <http://eudml.org/doc/275773>.
@article{Lalín2013,
abstract = {We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of $L$-functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.},
affiliation = {Département de mathématiques et de statistique Université de Montréal. CP 6128, succ. Centre-ville. Montreal, QC H3C 3J7, Canada},
author = {Lalín, Matilde N.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Mahler measure; Dirichlet L-function; isogeny},
language = {eng},
month = {9},
number = {2},
pages = {387-399},
publisher = {Société Arithmétique de Bordeaux},
title = {Equations for Mahler measure and isogenies},
url = {http://eudml.org/doc/275773},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Lalín, Matilde N.
TI - Equations for Mahler measure and isogenies
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 387
EP - 399
AB - We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of $L$-functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.
LA - eng
KW - Mahler measure; Dirichlet L-function; isogeny
UR - http://eudml.org/doc/275773
ER -
References
top- A. A. Beĭlinson, Higher regulators and values of -functions of curves. Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 46–47. Zbl0475.14015MR575206
- M.-J. Bertin, Mesure de Mahler d’une famille de polynômes. J. Reine Angew. Math. 569 (2004), 175–188. Zbl1048.11081MR2055716
- M.-J. Bertin, Mesure de Mahler et régulateur elliptique: preuve de deux relations “exotiques”. Number theory 1–12, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004. Zbl1152.11333MR2076562
- S. J.Bloch, Higher regulators, algebraic -theory, and zeta functions of elliptic curves. CRM Monograph Series, 11. American Mathematical Society, Providence, RI, 2000. x+97 pp. Zbl0958.19001MR1760901
- D. W. Boyd, Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), 37–82. Zbl0932.11069MR1618282
- F. Brunault, Étude de la valeur en de la fonction d’une courbe elliptique. Doctoral thesis, Université Paris 7 Denis-Diderot, 2005.
- F. Brunault, Version explicite du théorème de Beilinson pour la courbe modulaire . C. R. Math. Acad. Sci. Paris 343 (2006), no. 8, 505–510. Zbl1153.11314MR2267584
- J. W. S. Cassels, Lectures on elliptic curves. London Mathematical Society Student Texts, 24. Cambridge University Press, Cambridge, 1991. vi+137 pp. Zbl0752.14033MR1144763
- C. Deninger, Deligne periods of mixed motives, -theory and the entropy of certain -actions. J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. Zbl0913.11027MR1415320
- J. Guillera, M. Rogers, Mahler measure and the WZ algorithm. Proc. Amer. Math. Soc., June 2010. Zbl1321.33008
- N. Kurokawa and H. Ochiai, Mahler measures via crystalization. Commentarii Mathematici Universitatis Sancti Pauli 54 (2005), 121–137. Zbl1091.11036MR2199576
- M. N. Lalín, On a conjecture by Boyd. Int. J. Number Theory 6 (2010), no. 3, 705–711. Zbl1201.11098MR2652904
- M. N. Lalín, M. D. Rogers, Functional equations for Mahler measures of genus-one curves. Algebra Number Theory 1 (2007), no. 1, 87 – 117. Zbl1172.11037MR2336636
- A. Mellit, Elliptic dilogarithms and parallel lines. Preprint 2012, arXiv:1207.4722 [math.NT]. Zbl1072.14006
- F. Rodriguez-Villegas, Modular Mahler measures I. Topics in number theory (University Park, PA 1997), 17–48, Math. Appl., 467, Kluwer Acad. Publ. Dordrecht, 1999. Zbl0980.11026MR1691309
- F. Rodriguez-Villegas, Identities between Mahler measures. Number theory for the millennium, III (Urbana, IL, 2000), 223–229, A K Peters, Natick, MA, 2002. Zbl1029.11054MR1956277
- M. Rogers, Hypergeometric formulas for lattice sums and Mahler measures. Int Math Res Notices 17 (2011), 4027–4058. Zbl1282.11099MR2836402
- M. Rogers, W. Zudilin, From -series of elliptic curves to Mahler measures. Compositio Math. 148 (2012), no. 2, 385–414. Zbl1260.11062MR2904192
- M. Rogers, W. Zudilin, On the Mahler measures of . Preprint, March 2011. To appear in International Math. Research Notices. Zbl06369465
- J. H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1992. xii+400 pp. Zbl0585.14026MR1329092
- J. H. Silverman, J. Tate, Rational points on elliptic curves. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. x+281 pp. Zbl0752.14034MR1171452
- J. Top, Descent by 3-isogeny and 3-rank of quadratic fields, Advances in number theory (Kingston, ON, 1991), 303–317, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Zbl0804.11040MR1368429
- N. Touafek, M. Kerada,Mahler measure and elliptic regulator: some identities. JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 271–285. Zbl1152.11044MR2406862
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.