Equations for Mahler measure and isogenies

Matilde N. Lalín[1]

  • [1] Département de mathématiques et de statistique Université de Montréal. CP 6128, succ. Centre-ville. Montreal, QC H3C 3J7, Canada

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 2, page 387-399
  • ISSN: 1246-7405

Abstract

top
We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of L -functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.

How to cite

top

Lalín, Matilde N.. "Equations for Mahler measure and isogenies." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 387-399. <http://eudml.org/doc/275773>.

@article{Lalín2013,
abstract = {We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of $L$-functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.},
affiliation = {Département de mathématiques et de statistique Université de Montréal. CP 6128, succ. Centre-ville. Montreal, QC H3C 3J7, Canada},
author = {Lalín, Matilde N.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Mahler measure; Dirichlet L-function; isogeny},
language = {eng},
month = {9},
number = {2},
pages = {387-399},
publisher = {Société Arithmétique de Bordeaux},
title = {Equations for Mahler measure and isogenies},
url = {http://eudml.org/doc/275773},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Lalín, Matilde N.
TI - Equations for Mahler measure and isogenies
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 387
EP - 399
AB - We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of $L$-functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.
LA - eng
KW - Mahler measure; Dirichlet L-function; isogeny
UR - http://eudml.org/doc/275773
ER -

References

top
  1. A. A. Beĭlinson, Higher regulators and values of L -functions of curves. Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 46–47. Zbl0475.14015MR575206
  2. M.-J. Bertin, Mesure de Mahler d’une famille de polynômes. J. Reine Angew. Math. 569 (2004), 175–188. Zbl1048.11081MR2055716
  3. M.-J. Bertin, Mesure de Mahler et régulateur elliptique: preuve de deux relations “exotiques”. Number theory 1–12, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004. Zbl1152.11333MR2076562
  4. S. J.Bloch, Higher regulators, algebraic K -theory, and zeta functions of elliptic curves. CRM Monograph Series, 11. American Mathematical Society, Providence, RI, 2000. x+97 pp. Zbl0958.19001MR1760901
  5. D. W. Boyd, Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), 37–82. Zbl0932.11069MR1618282
  6. F. Brunault, Étude de la valeur en s = 2 de la fonction L d’une courbe elliptique. Doctoral thesis, Université Paris 7 Denis-Diderot, 2005. 
  7. F. Brunault, Version explicite du théorème de Beilinson pour la courbe modulaire X 1 ( N ) . C. R. Math. Acad. Sci. Paris 343 (2006), no. 8, 505–510. Zbl1153.11314MR2267584
  8. J. W. S. Cassels, Lectures on elliptic curves. London Mathematical Society Student Texts, 24. Cambridge University Press, Cambridge, 1991. vi+137 pp. Zbl0752.14033MR1144763
  9. C. Deninger, Deligne periods of mixed motives, K -theory and the entropy of certain Z n -actions. J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. Zbl0913.11027MR1415320
  10. J. Guillera, M. Rogers, Mahler measure and the WZ algorithm. Proc. Amer. Math. Soc., June 2010. Zbl1321.33008
  11. N. Kurokawa and H. Ochiai, Mahler measures via crystalization. Commentarii Mathematici Universitatis Sancti Pauli 54 (2005), 121–137. Zbl1091.11036MR2199576
  12. M. N. Lalín, On a conjecture by Boyd. Int. J. Number Theory 6 (2010), no. 3, 705–711. Zbl1201.11098MR2652904
  13. M. N. Lalín, M. D. Rogers, Functional equations for Mahler measures of genus-one curves. Algebra Number Theory 1 (2007), no. 1, 87 – 117. Zbl1172.11037MR2336636
  14. A. Mellit, Elliptic dilogarithms and parallel lines. Preprint 2012, arXiv:1207.4722 [math.NT]. Zbl1072.14006
  15. F. Rodriguez-Villegas, Modular Mahler measures I. Topics in number theory (University Park, PA 1997), 17–48, Math. Appl., 467, Kluwer Acad. Publ. Dordrecht, 1999. Zbl0980.11026MR1691309
  16. F. Rodriguez-Villegas, Identities between Mahler measures. Number theory for the millennium, III (Urbana, IL, 2000), 223–229, A K Peters, Natick, MA, 2002. Zbl1029.11054MR1956277
  17. M. Rogers, Hypergeometric formulas for lattice sums and Mahler measures. Int Math Res Notices 17 (2011), 4027–4058. Zbl1282.11099MR2836402
  18. M. Rogers, W. Zudilin, From L -series of elliptic curves to Mahler measures. Compositio Math. 148 (2012), no. 2, 385–414. Zbl1260.11062MR2904192
  19. M. Rogers, W. Zudilin, On the Mahler measures of 1 + X + 1 / X + Y + 1 / Y . Preprint, March 2011. To appear in International Math. Research Notices. Zbl06369465
  20. J. H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1992. xii+400 pp. Zbl0585.14026MR1329092
  21. J. H. Silverman, J. Tate, Rational points on elliptic curves. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. x+281 pp. Zbl0752.14034MR1171452
  22. J. Top, Descent by 3-isogeny and 3-rank of quadratic fields, Advances in number theory (Kingston, ON, 1991), 303–317, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Zbl0804.11040MR1368429
  23. N. Touafek, M. Kerada,Mahler measure and elliptic regulator: some identities. JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 271–285. Zbl1152.11044MR2406862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.