A finite difference method for fractional diffusion equations with Neumann boundary conditions

Béla J. Szekeres; Ferenc Izsák

Open Mathematics (2015)

  • Volume: 13, Issue: 1, page 553-561
  • ISSN: 2391-5455

Abstract

top
A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved.

How to cite

top

Béla J. Szekeres, and Ferenc Izsák. "A finite difference method for fractional diffusion equations with Neumann boundary conditions." Open Mathematics 13.1 (2015): 553-561. <http://eudml.org/doc/275973>.

@article{BélaJ2015,
abstract = {A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved.},
author = {Béla J. Szekeres, Ferenc Izsák},
journal = {Open Mathematics},
keywords = {Fractional order diffusion; Grünwald–Letnikov formula; Non-local derivative; Neumann boundary conditions; Implicit Euler scheme; fractional order Laplacian; matrix transformation method; finite element method; error estimation},
language = {eng},
number = {1},
pages = {553-561},
title = {A finite difference method for fractional diffusion equations with Neumann boundary conditions},
url = {http://eudml.org/doc/275973},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Béla J. Szekeres
AU - Ferenc Izsák
TI - A finite difference method for fractional diffusion equations with Neumann boundary conditions
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 553
EP - 561
AB - A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved.
LA - eng
KW - Fractional order diffusion; Grünwald–Letnikov formula; Non-local derivative; Neumann boundary conditions; Implicit Euler scheme; fractional order Laplacian; matrix transformation method; finite element method; error estimation
UR - http://eudml.org/doc/275973
ER -

References

top
  1. [1] Treumann, R. A., Theory of super-diffusion for the magnetopause, Geophys. Res. Lett., 1997, 24, 1727–1730 [Crossref] 
  2. [2] Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, 2007, Nature, 449, 1044–1048 [WoS] 
  3. [3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 2000, 36, 1403–1412 [Crossref] 
  4. [4] Podlubny, I., Fractional differential equations, Academic Press Inc., San Diego, CA, 1999 Zbl0924.34008
  5. [5] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 2013, 23, 493–540 [Crossref] Zbl1266.26020
  6. [6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints, SIAM Rev., 2012, 54, 667–696 [Crossref][WoS] Zbl06122544
  7. [7] Meerschaert, M. M., Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 2004, 172, 65–77 Zbl1126.76346
  8. [8] Deng, W. H., Chen, M., Efficient numerical algorithms for three-dimensional fractional partial diffusion equations, J. Comp. Math., 2014, 32, 371–391 [Crossref] Zbl1313.65247
  9. [9] Tadjeran, C., Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 2007, 220, 813–823 Zbl1113.65124
  10. [10] Tadjeran, C., Meerschaert, M. M., Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 2006, 213, 205–213 Zbl1089.65089
  11. [11] Tian, W., Zhou, H., Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 2015, 84, 1703–1727 [Crossref] Zbl1318.65058
  12. [12] Zhou, H., Tian, W., Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 2013, 56, 45–66 [Crossref] Zbl1278.65130
  13. [13] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 2015, 293, 104–114 [WoS] 
  14. [14] Bhrawy, A. H., Zaky, M.A., Van Gorder, R.A., A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms, 2015 (in press), DOI: 10.1007/s11075-015-9990-9 [Crossref] Zbl1334.65166
  15. [15] Nochetto, R., Otárola, E., Salgado, A., A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis, Found. Comput. Math., 2014, 1–59 Zbl06461818
  16. [16] Huang, J., Nie, N., Tang, Y., A second order finite difference-spectral method for space fractional diffusion equations, Sci. Chin. Math., 2014, 57, 1303–1317 [Crossref] Zbl1305.65185
  17. [17] Doha, E., Bhrawy, A., Ezz-Eldien, S., Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method, Cent. Eur. J. of Phys., 2013, 11, 1494–1503 [WoS] Zbl1291.65207
  18. [18] Bhrawy, A. H., Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876–895 
  19. [19] Bhrawy, A. H., Zaky, M.A., Machado, J. T., Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation, J. Vib. Control, 2015 (in press), DOI: 10.1177/107754631456683 [Crossref] 
  20. [20] Bhrawy, A. H., Baleanu, D., A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Rep. Math. Phys., 2013, 72, 219–233 [WoS][Crossref] Zbl1292.65109
  21. [21] Xu, S., Ling, X., Cattani, C., Xie, G., Yang, X., Zhao, Y., Local fractional Laplace variational iteration method for nonhomogeneous heat equations arising in fractal heat flow, Math. Probl. Eng., 2014, Art. ID 914725 [WoS] 
  22. [22] Yang, A., Li, J., Srivastava, H. M., Xie, G., Yang, X., Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative, Discrete Dyn. Nat. Soc., 2014, Art. ID 365981 [WoS] 
  23. [23] Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal., 2005, 8, 323–341 Zbl1126.26009
  24. [24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 Zbl1092.45003
  25. [25] Miller, K. S., Ross, B., An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc., New York, 1993 Zbl0789.26002
  26. [26] Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993 Zbl0818.26003
  27. [27] Atangana, A., Secer, A., A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013, DOI:10.1155/2013/27968 [Crossref] Zbl1276.26010
  28. [28] Hilfer, R., Threefold Introduction to Fractional Derivatives, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 
  29. [29] Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34, 200–218 [WoS][Crossref] Zbl1185.65200
  30. [30] Shen, S., Liu, F., Anh, V., Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 2008, 73, 850–872 [WoS] Zbl1179.37073
  31. [31] Adams, R. A., Fournier, J. J. F., Sobolev spaces, Academic Press, Amsterdam, 2003 Zbl1098.46001
  32. [32] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000 Zbl0981.65001
  33. [33] Wang, H. and Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 2012, 34, A2444–A2458 [WoS] 
  34. [34] Bonito, A., Pasciak, J. E., Numerical Approximation of Fractional Powers of Elliptic Operators, Math. Comp., 2015, 84, 2083–2110 [Crossref] Zbl1331.65159
  35. [35] Szymczak, P., Ladd, A. J. C., Boundary conditions for stochastic solutions of the convection-diffusion equation, Phys. Rev. E, 2003, 68, 12 
  36. [36] Baeumer, B., Kovács, M., Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 2008, 55, 2212–2226 [Crossref] Zbl1142.65422
  37. [37] Evans, L. C., Partial differential equations, American Mathematical Society, Providence, RI, 1998 Zbl0902.35002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.