Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗

Gloria Faccanoni; Samuel Kokh; Grégoire Allaire

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 5, page 1029-1054
  • ISSN: 0764-583X

Abstract

top
In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS for the two-phase medium. Within this framework, mass transfer is the result of local and instantaneous equilibria between both phases. The overall model is strictly hyperbolic. We examine properties of the equilibrium EOS and we propose a discretization strategy based on a finite-volume relaxation method. This method allows to cope with the implicit definition of the equilibrium EOS, even when the model involves complex EOS’s for the pure phases. We present two-dimensional numerical simulations that shows that the model is able to reproduce mechanism such as phase disappearance and nucleation.

How to cite

top

Faccanoni, Gloria, Kokh, Samuel, and Allaire, Grégoire. "Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1029-1054. <http://eudml.org/doc/276376>.

@article{Faccanoni2012,
abstract = {In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS for the two-phase medium. Within this framework, mass transfer is the result of local and instantaneous equilibria between both phases. The overall model is strictly hyperbolic. We examine properties of the equilibrium EOS and we propose a discretization strategy based on a finite-volume relaxation method. This method allows to cope with the implicit definition of the equilibrium EOS, even when the model involves complex EOS’s for the pure phases. We present two-dimensional numerical simulations that shows that the model is able to reproduce mechanism such as phase disappearance and nucleation.},
author = {Faccanoni, Gloria, Kokh, Samuel, Allaire, Grégoire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Compressible flows; two-phase flows; hyperbolic systems; phase change; relaxation method; compressible flows},
language = {eng},
month = {2},
number = {5},
pages = {1029-1054},
publisher = {EDP Sciences},
title = {Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗},
url = {http://eudml.org/doc/276376},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Faccanoni, Gloria
AU - Kokh, Samuel
AU - Allaire, Grégoire
TI - Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium∗
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/2//
PB - EDP Sciences
VL - 46
IS - 5
SP - 1029
EP - 1054
AB - In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS for the two-phase medium. Within this framework, mass transfer is the result of local and instantaneous equilibria between both phases. The overall model is strictly hyperbolic. We examine properties of the equilibrium EOS and we propose a discretization strategy based on a finite-volume relaxation method. This method allows to cope with the implicit definition of the equilibrium EOS, even when the model involves complex EOS’s for the pure phases. We present two-dimensional numerical simulations that shows that the model is able to reproduce mechanism such as phase disappearance and nucleation.
LA - eng
KW - Compressible flows; two-phase flows; hyperbolic systems; phase change; relaxation method; compressible flows
UR - http://eudml.org/doc/276376
ER -

References

top
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys.181 (2002) 577–616.  
  2. G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris, Sér. I344 (2007) 135–140.  
  3. K. Annamalai and I.K. Puri, Advanced thermodynamics engineering. CRC Press (2002).  
  4. Th. Barberon and Ph. Helluy, Finite volume simulations of cavitating flows. Comput. Fluids34 (2005) 832–858.  
  5. J. Benoist and J.-B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?SIAM J. Math. Anal.27 (1996) 1661–1679.  
  6. S. Benzoni Gavage, Stability of multi-dimensional phase transitions in a Van der Waals fluid. Nonlinear Anal.31 (1998) 243–263.  
  7. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004).  
  8. J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys.100 (1992) 335–354.  
  9. H.B. Callen, Thermodynamics and an introduction to thermostatistics. John Wiley & sons, 2nd edition (1985).  
  10. F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique (2004).  URIhttp://www.imprimerie.polytechnique.fr/Theses/Files/caro.pdf.
  11. F. Caro, F. Coquel, D. Jamet and S. Kokh, A simple finite-volume method for compressible isothermal two-phase flows simulation. International Journal on Finite Volumes (2006). .  URIhttp://www.latp.univ-mrs.fr/IJFVDB/ijfv-caro-coquel-jamet-kokh.pdf
  12. G. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math.47 (1992) 787–830.  
  13. F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluids dynamics. SIAM J. Numer. Anal.35 (1998) 2223–2249.  
  14. J.-M. Delhaye, M. Giot and M.L. Riethmuller, Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere Publishing Corporation (1981).  
  15. J.-M. Delhaye, M. Giot, L. Mahias, P. Raymond and C. Rénault, Thermohydraulique des réacteurs. EDP Sciences (1998).  
  16. V.K. Dhir, Boiling heat transfer. Ann. Rev. Fluid Mech.30 (1998) 365–401.  
  17. J.E. Dunn and J. Serrin, On the thermomechanics of interstitial working. Arch. Rational Mech. Anal.88 (1985) 95–133.  
  18. G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (2008). .  URIhttp://pastel.paristech.org/4785/
  19. G. Faccanoni, S. Kokh and G. Allaire, Numerical simulation with finite volume of dynamic liquid-vapor phase transition, Finite Volumes for Complex Applications V. ISTE and Wiley (2008) 391–398.  
  20. G. Faccanoni, G. Allaire and S. Kokh, Modelling and numerical simulation of liquid-vapor phase transition, in Conf. Proc. of EUROTHERM-84, Seminar on Thermodynamics of Phase Changes, Namur (2009).  
  21. G. Faccanoni, S. Kokh and G. Allaire, Approximation of liquid-vapor phase transition for compressible fluids with tabulated EOS. C. R. Acad. Sci. Paris Sér. I348 (2010) 473–478.  
  22. H. Fan, One phase Riemann problem and wave interactions in systems of conservation laws of mixed type. SIAM J. Math. Anal.24 (1993) 840–865.  
  23. H. Fan, Traveling waves, Riemann problems and computations of a model of the dynamics of liquid/vapor phase transitions. J. Differ. Equ.150 (1998) 385–437.  
  24. H. Fan and M. Slemrod, The Riemann problem for systems of conservation laws of mixed type, in Conf. Proc. on Shock Induced Transitions and Phase Structure in General Media Institute of Mathematics and its Applications. Minneapolis (1990) 61–91.  
  25. C. Fouillet, Généralisation à des mélanges binaires de la méthode du second gradient et application à la simulation numérique directe de l’ébullition nuclée. Ph.D. thesis, Université Paris 6 (2003).  
  26. E. Godlewski and N. Seguin, The Riemann problem for a simple model of phase transition. Commun. Math. Sci.4 (2006) 227–247.  
  27. H. Gouin, Utilization of the second gradient theory in continuum mechanics to study the motion and thermodynamics of liquid-vapor interfaces. Physicochemical Hydrodynamics – Interfacial Phenomena B174 (1987) 667–682.  
  28. W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997).  
  29. Ph. Helluy, Quelques exemples de méthodes numériques récentes pour le calcul des écoulements multiphasiques. Mémoire d’habilitation à diriger des recherches (2005).  
  30. Ph. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. to appear.  
  31. Ph. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM : M2AN40 (2006) 331–352.  
  32. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001).  
  33. D. Jamet, O. Lebaigue, N. Coutris and J.-M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys.169 (2001) 624–651.  
  34. S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).  
  35. S. Jin and C.D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys.126 (1996) 449–467.  
  36. S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interfaces. Ph.D. thesis, Université Paris 6 (2001).  
  37. D.J. Korteweg, Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci. Exactes Sér. II6 (1901) 1–24.  
  38. P.G. LeFloch, Hyperbolic systems of conservation laws. Birkhäuser Verlag, Basel (2002).  
  39. O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Thermal Sci.43 (2004) 265–276.  
  40. O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys.205 (2005) 567–610.  
  41. E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical properties of fluid systems, in WebBook de Chimie NIST, Base de Données Standard de Référence NIST Numéro 69, National Institute of Standards and Technology, edited by P.J. Linstrom and W.G. Mallard. Gaithersburg MD, 20899, .  URIhttp://webbook.nist.gov
  42. R.J. LeVeque, Finite Volume methods for hyperbolic problems. Cambridge University Press, Cambridge. Appl. Math. (2002).  
  43. T.P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys.108 (1987) 153–175.  
  44. T. Matolcsi, On the classification of phase transitions. Z. Angew. Math. Phys.47 (1996) 837–857.  
  45. R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys.61 (1989) 75–130.  
  46. S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transfer9 (1966) 1419–1433. (English translation of the original paper published in J. Jpn Soc. Mech. Eng.37 (1934) 367–374).  
  47. F. Petitpas, E. Franquet, R. Saurel and O. Le Métayer, A relaxation-projection method for compressible flows. II. Artificial heat exchanges for multiphase shocks. J. Comput. Phys.225 (2007) 2214–2248.  
  48. P. Ruyer, Modèle de champ de phase pour l’étude de l’ébullition. Ph.D. thesis, École Polytechnique (2006). .  URIwww.imprimerie.polytechnique.fr/Theses/Files/Ruyer.pdf
  49. R. Saurel, J.-P. Cocchi and P.-B. Butlers, Numerical study of cavitation in the wake of a hypervelocity underwater projectile. J. Propuls. Power15 (1999) 513–522.  
  50. R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids : application to cavitating and flashing flows. J. Fluid Mech.607 (2008) 313–350.  
  51. M. Shearer, Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type. Proc. R. Soc. Edinb.93 (1983) 133–244.  
  52. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal.81 (1983) 301–315.  
  53. L. Truskinovsky, Kinks versus shocks, in Shock induced transitions and phase structures in general media, edited by R. Fosdick et al. Springer Verlag, Berlin (1991).  
  54. P. Van Carey, Liquid-vapor phase-change phenomena. Taylor and Francis (1992).  
  55. A. Voß, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of State. Ph.D. thesis, RWTH-Aachen (2004). . URIhttp://www.it-voss.com/papers/thesis-voss-030205-128-final.pdf

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.